(3.236.231.61) 您好!臺灣時間:2021/05/11 20:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林耀群
研究生(外文):Lin, Yao-chun
論文名稱:以GaAs為被動Q-開關及輸出耦合鏡之全固態Nd:YVO4雷射
論文名稱(外文):Use of GaAs as a passive Q-switch as well as an output coupler for diode-pumped Nd:YVO4 lasers
指導教授:蒲念文蒲念文引用關係
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:54
中文關鍵詞:被動Q-開關Nd:YVO4雷射
外文關鍵詞:GaAs
相關次數:
  • 被引用被引用:1
  • 點閱點閱:154
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文探討全固態被動Q-開關雷射系統。Q-開關的操作對於二極體泵激固態雷射相當的普遍及重要,並且在最近幾年,許多領域都必須利用到Q-開關雷射,如: 非線性光學、測距、微機械製造及醫藥等方面。本實驗中我們利用GaAs晶圓作為被動Q-開關的重要元件。我們利用GaAs晶圓具有飽和吸收體及輸出耦合鏡的特性,完成被動Q-開關實驗的架設。GaAs作為輸出耦合鏡時,我們將其視為一個法布立-玻羅共振腔,得到其反射率為73.5%、穿透率為26.5%。本實驗所使用的增益介質具有兩種不同長度,6 mm及3 mm。我們得到的實驗結果為:共振腔長從8 mm ~ 17 mm,脈衝寬度最短為7 ns。光子生命期約為0.33 ns,峰值功率最高可達約314 W,脈衝重複率最大約為1.7 MHZ,脈衝能量高達2.2 μJ。
In this paper, we investigate an all-solid-state passive Q-switched Nd:YVO4 laser system. Q-switching operation is very common and important for diode-pumped solid-state lasers. And in recent years, Q-switched lasers have been used in many fields, such as nonlinear optics, range finding, medicine, and micromachining, etc. In this experiment, we use GaAs wafer as an important element for passive Q-switching. The GaAs wafer, which works as an saturable absorber, was used as the Q-switch in the laser system. Moreover, GaAs wafer also acts as an anti-resonant Fabry-Perot resonantor, so we use it as an output coupler. Its reflectance is 73.5%, and its transmittance is 26.5%. We use two gain media with different lengths. One is 6 mm, and the other is 3 mm. The results of this experiment are as follows: The cavity length is adjustable from 8 mm to 17 mm;the shotest pulse width is 7 ns;its photon lifetime is about 0.33 ns;the highest peak power is 314 W;the highest repetition rate is about 1.7 MHz;its pulse energy is up to 2.2 μJ.
目錄

致謝................................................................ii
摘要...............................................................iii
ABSTRACT...........................................................iv
目錄.................................................................v
表目錄.............................................................vii
圖目錄............................................................viii
1. 緒論..............................................................1
1.1 前言...........................................................1
1.2 Q-開關與鎖模(Mode-Locking)比較..................................1
1.3 Q-開關雷射之應用................................................2
1.4 論文結構.......................................................2
2. Q-開關原理........................................................4
2.1 Q-開關.........................................................4
2.1.1 主動介質內的吸收與增益......................................4
2.1.2 主動介質中能量的儲存........................................5
2.1.3 光腔內的環路增益...........................................6
2.1.4 Q-開關和增益............................................7 2.2 被動Q-開關.......................................................9
2.2.1 被動Q-開關速率方程式..................................9
2.2.2 近似解..................................................10
2.2.3 第二閾值條件.............................................12
2.3 GaAs的EL2飽和吸體.............................................15
3. 實驗儀器架設......................................................17
3.1 雷射共振腔的設計..............................................17
3.2 實驗器材介紹..................................................18
3.2.1 泵激光源...............................................18
3.2.2 雷射增益介質- Nd:YVO4晶體...............................18
3.2.3 GaAs材料特性...........................................20
3.2.4 GaAs 為輸出耦合鏡的原理.................................23
3.2.5 被動Q-開關的光子生命期..................................25
4. 實驗結果.........................................................28
4.1 實驗結果及分析................................................28
4.1.1 晶體長度為6 mm..........................................28
4.1.2 晶體長度為3 mm..........................................36
4.2 實驗結果討論..................................................43
4.2.1 脈衝重複率與腔長的關係...................................44
4.2.2 脈衝能量與腔長的關係.....................................45
4.2.3 峰值功率與腔長的關係.....................................46
4.2.4 脈衝寬度與腔長的關係.....................................46
4.2.5 脈衝重複率與晶體長度的關係................................47
5. 實驗結論及未來展望.................................................49
5.1 實驗結論.....................................................49
5.2 未來展望.....................................................49
參考文獻............................................................50
自傳................................................................54
表目錄

表 1.1 Q-開關與鎖模比較表.............................................2
表 3.1 不同Nd+3宿主的光特性及物理性質的比較表..........................19
表 3.2 GaAs在常溫下的特性...........................................21


圖目錄

圖2.1 簡單的四階固態雷射能階圖.........................................6
圖2.2 雷射腔示意圖...................................................7
圖2.3 好的被動Q-開關與第二閾值存在相依................................13
圖3.1 實驗儀器架設圖................................................17
圖3.2 二極體雷射架構圖...............................................18
圖3.3 GaAs晶格的單位立方體...........................................20
圖3.4 GaAs的能帶圖示................................................22
圖3.5 穿透率與相位差之關係圖.........................................25
圖3.6 簡易被動Q-開關系統.............................................26
圖4.1 腔長17 mm的脈衝寬度...........................................28
圖4.2 腔長為8 mm的脈衝寬度...........................................29
圖4.3 脈衝寬度與腔長關係圖...........................................30
圖4.4 腔長17 mm的脈衝重複時間........................................31
圖4.5 腔長8 mm的脈衝重複時間.........................................32
圖4.6 脈衝重複率與腔長與的關係........................................33
圖4.7 峰值功率與腔長與的關係圖........................................34
圖4.8 脈衝能量與腔長關係圖...........................................35
圖4.9 腔長為17 mm的脈衝寬度..........................................36
圖4.10 腔長為8 mm的脈衝寬度...........................................37
圖4.11 脈衝寬度與腔長與的關係圖........................................38
圖4.12 腔長17 mm的脈衝重複時間........................................39
圖4.13 腔長8 mm的脈衝重複時間.........................................40
圖4.14 脈衝重複率與腔長的關係.........................................41
圖4.15 峰值功率與腔長的關係...........................................42
圖4.16 脈衝能量與腔長關係圖...........................................43
圖4.17 脈衝重複率與晶體長度的關係......................................48
參考文獻

[1]Agnesi, A., Dell’Acqua, S., Morello, C., Piccinno, G., Readi, C., and Sun, Z., “Diode-pumped neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers,” IEEE J Sel. Top. In Quantum Electron., Vol. 3, pp.45-52, 1997.
[2]Chen, Y. F., Huang, T. M., and Wang, C. L., “Passively Q-switched diode-pumped Nd:YVO4 / Cr4+:YAG single-frequency microchip laser,” Electroics Lett., Vol. 33, pp.1880-1881, 1997.
[3]Agnesi, A., Dell’Acqua, S., Piccinini, E. Readi, C., and Piccinno, G., “Efficient wavelength conversion with high-power passively Q-switched diode-pumped neodymium lasers,” IEEE J. Quantum Electron., Vol. 34, pp.1480-1484, 1998.
[4]Klimov, I. V., Nikol’skill, N. Y., Tsvetkov, V. B., and Shcherbakov, I. A., “Passive Q-switching of pulsed Nd3+ lasers using Cr4+:YSGG switches exhibiting phototropic properties,” Sov. J. Quantum Electron., Vol. 2, pp.653-656, 1992.
[5]Zayhowski, J. J. and Dill, C., “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett., Vol. 19, pp.1427-1429, 1994.
[6]Tsou, Y., Garmire, E., Chen, W., Birnbaum, M., and Asthana, R., “Passive Q-switching of Nd:YAG lasers by use of bulk semiconductors,” Opt. Lett., Vol. 18, pp.1514-1516, 1993.
[7]Kajava, T. T. and Gaeta, A. L., “Q-switching of a diode-pumped Nd:YAG laser with GaAs,” Opt. Lett., Vol. 21, pp.1244-1246, 1996.
[8]Braun, B. and Keller, U., “Single-frequency Q-switched ring laser with an antiresonant Fabry-Perot saturable absorber,” Opt. Lett., Vol. 21, pp.1020-1022, 1996.
[9]Braumm, B. B., Kartner, F. X., Zheng, G., Moser, M., and Keller, U., “56 ps passively Q-switched diode-pumped microchip laser,” Opt. Lett., Vol. 22, pp.381-383, 1997.
[10]Preffer, N., Naudin, C., Delysse, S., Molva, E., Marty, J., and Aubrt, J. J., “Study of polymers for saturable absorption: application to monolithic Q-switched microlasers,” Mol. Cryst Liquid Cryst Sci. Tech. Sect. B: Nonlinear Opt., Vol. 15, pp.243-246, 1996.
[11]Oki, Y., Ohon, K., and Maeda, M., “Tunable ultrashort pulse generation from a waveguided laser with premixed-dye-doped plastic film,” Japanese J. Appl Phys., Vol. 37, pp.6403-6407, 1998.
[12]Gu, J., Zhou, F., Wan, K. T., and Lim, T. K., “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. and Lasers in Engineering, Vol. 35, pp.299-307, 2001.
[13]Gu, J., Zhou, F., Tam, S. C., Xie, W., Lam, Y. L., and Chen, Y., “Passive Q-switching of a Nd:YAG laser with a GaAs output coupler,” Opt. Eng., Vol. 38(11), 1999.
[14]Gu, J., Zhou, F., Tam, S. C., Xie, W., and Lam, Y. L., “Passive Q-switching of a diode-pumped Nd:YAG laser with a GaAs output coupler,” Opt. Commun., Vol. 165, pp.245-249, 1999.
[15]Gu, J., Zhou, F., Tam, S. C., Xie, W., Lam, Y. L., Kam, C. H., Xie, W., Lim, T. K., and Wan, K. T., “Q-switching of a diode-end-pumped Nd:YVO4 laser with GaAs output coupler,” Int. Sym. on Photonics and application., Paper No SPIE3898-15, pp. 170-177, 1999.
[16] Gu, J., TAM, S. C., Lam, Y. L., Chen, Y., Kam, C. H., Tan, W., Xie, W., Zhao, G., and Yang, H., “Novel use of GaAs as a passive Q-switch as well as an output coupler for diode-pumped infrared solid-state lasers,” Proceedings of SPIE., Vol. 3929, pp. 222-228, 2000.
[17] http://www.aiofm.ac.cn/develop.html
[18] http://ykuo.ncue.edu.tw/report/033-Laser%20application.doc
[19http://repairfaq.ece.drexel.edu/sam/CORD/leot/course03_mod12/mod03-12.html
[20] Siegman, A. E., Lasers, University Science Books, Sausalito, California, pp.1024-1028, 1986
[21] Swaminathan, V. and Macrander, A. T., Materials Aspects of GaAs and InP Based Structures, Prentice, New Jersey, 1990.
[22] 路建華,“高功率二極體雷射泵激之Nd:YVO4雷射”,碩士論文,國防大學中正理工學院,桃園,1999。
[23] Delta Elektronika BV,“SM 1540-D Manu & Jenoptik Laser Diode Gmbh,”Fiber-coupled High-power Diode Laser Module JOLD-12-CPXF-1L”
[24]Matthews, D. G., Boon, J. R., Conroy, R. S., and Sinclair, B. D., “A comparative study of diode pumped microchip laser materials: Nd-doped YVO4, YOS, SFAP and SVAP,” J. Mod. Optics, Vol. 43, pp.1079-1087, 1996.
[25] Kayali, S., Ponchak, G., Shaw, R.,“GaAs MMIC Reliabilty Assurance Guideline for space application,” National Aeronautics and Space Administration, Jet Propulsion Laboratory California Institute of Technology Pasadena, California, Dec. 15, 1996.
[26]Welker, H., Naturforsch, Z., “III-V semiconductivity demonstrated,” Vol. A, No. 7, pp.744, 1952.
[27] Sze, S. M., Semiconductor Devices Physics and Technology, John Wiley, New York, 1985.
[28] Pierret, R. F., Semiconductor Fundamentals, Addison-Wesley Publishing, New York, 1989.
[29] Casey, H. C., Atomic Diffusion in Semiconductors, D. Shaw, Plenum, New York, 1973.
[30] Chiang, S. Y., “Properties of Vacancy Defects in GaAs Single Crystals,”J. Appl. Phys., Vol. 5, pp. 2986, 1975.
[31] Markram-Ebied, S.,“Nature of EL2: The Main Native Midgap Electron Trap in VPE and Bulk GaAs,”Semi-insulating III-V Materials, D. Look, Editor, Shiva Publishing Ltd., England, 1984.
[32] Verdeyen, J. T., Laser Electronics, Prentice-Hall, London, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔