|
第一部份 1.Ouyang, P. & Sugrue, S. P. Characterization of pinin, a novel protein associated with the desmosome-intermediate filament complex. J Cell Biol 135, 1027-42 (1996). 2.Brandner, J. M., Reidenbach, S. & Franke, W. W. Evidence that "pinin", reportedly a differentiation-specific desmosomal protein, is actually a widespread nuclear protein. Differentiation 62, 119-27 (1997). 3.Brandner, J. M., Reidenbach, S., Kuhn, C. & Franke, W. W. Identification and characterization of a novel kind of nuclear protein occurring free in the nucleoplasm and in ribonucleoprotein structures of the "speckle" type. Eur J Cell Biol 75, 295-308 (1998). 4.Wang, P., Lou, P. J., Leu, S. & Ouyang, P. Modulation of alternative pre-mRNA splicing in vivo by pinin. Biochem Biophys Res Commun 294, 448-55 (2002). 5.Li, C., Lin, R. I., Lai, M. C., Ouyang, P. & Tarn, W. Y. Nuclear Pnn/DRS protein binds to spliced mRNPs and participates in mRNA processing and export via interaction with RNPS1. Mol Cell Biol 23, 7363-76 (2003). 6.Le Hir, H., Izaurralde, E., Maquat, L. E. & Moore, M. J. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860-9 (2000). 7.Le Hir, H., Moore, M. J. & Maquat, L. E. Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev 14, 1098-108 (2000). 8.Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M. J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987-97 (2001). 9.Lu, S. & Cullen, B. R. Analysis of the stimulatory effect of splicing on mRNA production and utilization in mammalian cells. Rna 9, 618-30 (2003). 10.Nott, A., Meislin, S. H. & Moore, M. J. A quantitative analysis of intron effects on mammalian gene expression. Rna 9, 607-17 (2003). 11.Lejeune, F. & Maquat, L. E. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 17, 309-15 (2005). 12.Tange, T. O., Nott, A. & Moore, M. J. The ever-increasing complexities of the exon junction complex. Curr Opin Cell Biol 16, 279-84 (2004). 13.Tange, T. O., Shibuya, T., Jurica, M. S. & Moore, M. J. Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. Rna 11, 1869-83 (2005). 14.Maquat, L. E. & Carmichael, G. G. Quality control of mRNA function. Cell 104, 173-6 (2001). 15.Hillman, R. T., Green, R. E. & Brenner, S. E. An unappreciated role for RNA surveillance. Genome Biol 5, R8 (2004). 16.Morrison, M., Harris, K. S. & Roth, M. B. smg mutants affect the expression of alternatively spliced SR protein mRNAs in Caenorhabditis elegans. Proc Natl Acad Sci U S A 94, 9782-5 (1997). 17.Maquat, L. E. Nonsense-mediated mRNA decay: a comparative analysis of different species. Curr Genomics 5, 175-190 (2004). 18.Nagy, E. & Maquat, L. E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci 23, 198-9 (1998). 19.Maquat, L. E. & Li, X. Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay. Rna 7, 445-56 (2001). 20.Brocke, K. S., Neu-Yilik, G., Gehring, N. H., Hentze, M. W. & Kulozik, A. E. The human intronless melanocortin 4-receptor gene is NMD insensitive. Hum Mol Genet 11, 331-5 (2002). 21.Leeds, P., Peltz, S. W., Jacobson, A. & Culbertson, M. R. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev 5, 2303-14 (1991). 22.Hodgkin, J., Papp, A., Pulak, R., Ambros, V. & Anderson, P. A new kind of informational suppression in the nematode Caenorhabditis elegans. Genetics 123, 301-13 (1989). 23.Lykke-Andersen, J., Shu, M. D. & Steitz, J. A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121-31 (2000). 24.Maquat, L. E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5, 89-99 (2004).
第二部份 1.Harwood, C. A., McGregor, J. M., Proby, C. M. & Breuer, J. Human papillomavirus and the development of non-melanoma skin cancer. J Clin Pathol 52, 249-53 (1999). 2.Jenson, A. B., Geyer, S., Sundberg, J. P. & Ghim, S. Human papillomavirus and skin cancer. J Investig Dermatol Symp Proc 6, 203-6 (2001). 3.Wentzensen, N., Vinokurova, S. & von Knebel Doeberitz, M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res 64, 3878-84 (2004). 4.Burd, E. M. Human papillomavirus and cervical cancer. Clin Microbiol Rev 16, 1-17 (2003). 5.Deau, M. C., Favre, M., Jablonska, S., Rueda, L. A. & Orth, G. Genetic heterogeneity of oncogenic human papillomavirus type 5 (HPV5) and phylogeny of HPV5 variants associated with epidermodysplasia verruciformis. J Clin Microbiol 31, 2918-26 (1993). 6.Haller, K., Stubenrauch, F. & Pfister, H. Differentiation-dependent transcription of the epidermodysplasia verruciformis-associated human papillomavirus type 5 in benign lesions. Virology 214, 245-55 (1995). 7.Steger, G. & Corbach, S. Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J Virol 71, 50-8 (1997). 8.Band, V., De Caprio, J. A., Delmolino, L., Kulesa, V. & Sager, R. Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J Virol 65, 6671-6 (1991). 9.Munger, K. et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099-105 (1989). 10.Stirdivant, S. M. et al. Human papillomavirus type 16 E7 protein inhibits DNA binding by the retinoblastoma gene product. Mol Cell Biol 12, 1905-14 (1992). 11.Ronco, L. V., Karpova, A. Y., Vidal, M. & Howley, P. M. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 12, 2061-72 (1998). 12.Park, J. S. et al. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J Biol Chem 275, 6764-9 (2000). 13.Berg, M. & Stenlund, A. Functional interactions between papillomavirus E1 and E2 proteins. J Virol 71, 3853-63 (1997). 14.Van Tine, B. A. et al. Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning. Proc Natl Acad Sci U S A 101, 4030-5 (2004). 15.You, J., Croyle, J. L., Nishimura, A., Ozato, K. & Howley, P. M. Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 117, 349-60 (2004). 16.Lehman, C. W., King, D. S. & Botchan, M. R. A papillomavirus E2 phosphorylation mutant exhibits normal transient replication and transcription but is defective in transformation and plasmid retention. J Virol 71, 3652-65 (1997). 17.Lai, M. C., Teh, B. H. & Tarn, W. Y. A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing. J Biol Chem 274, 11832-41 (1999). 18.Fenton, B. & Glover, D. M. A conserved mitotic kinase active at late anaphase-telophase in syncytial Drosophila embryos. Nature 363, 637-40 (1993). 19.Glover, D. M., Hagan, I. M. & Tavares, A. A. Polo-like kinases: a team that plays throughout mitosis. Genes Dev 12, 3777-87 (1998). 20.Glover, D. M., Ohkura, H. & Tavares, A. Polo kinase: the choreographer of the mitotic stage? J Cell Biol 135, 1681-4 (1996). 21.Kitada, K., Johnson, A. L., Johnston, L. H. & Sugino, A. A multicopy suppressor gene of the Saccharomyces cerevisiae G1 cell cycle mutant gene dbf4 encodes a protein kinase and is identified as CDC5. Mol Cell Biol 13, 4445-57 (1993). 22.Elia, A. E. et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115, 83-95 (2003). 23.Lowery, D. W., Mohammad, D. H., Elia, A. E. & Yaffe, M. B. The Polo-box domain: a molecular integrator of mitotic kinase cascades and Polo-like kinase function. Cell Cycle 3, 128-31 (2004). 24.Jang, Y. J., Ma, S., Terada, Y. & Erikson, R. L. Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase. J Biol Chem 277, 44115-20 (2002). 25.Pak, D. T. & Sheng, M. Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science 302, 1368-73 (2003). 26.Barr, F. A., Sillje, H. H. & Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 5, 429-40 (2004). 27.Golsteyn, R. M. et al. Cell cycle analysis and chromosomal localization of human Plk1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5. J Cell Sci 107 ( Pt 6), 1509-17 (1994). 28.Simmons, D. L., Neel, B. G., Stevens, R., Evett, G. & Erikson, R. L. Identification of an early-growth-response gene encoding a novel putative protein kinase. Mol Cell Biol 12, 4164-9 (1992). 29.Ma, S., Liu, M. A., Yuan, Y. L. & Erikson, R. L. The serum-inducible protein kinase Snk is a G1 phase polo-like kinase that is inhibited by the calcium- and integrin-binding protein CIB. Mol Cancer Res 1, 376-84 (2003). 30.Donohue, P. J., Alberts, G. F., Guo, Y. & Winkles, J. A. Identification by targeted differential display of an immediate early gene encoding a putative serine/threonine kinase. J Biol Chem 270, 10351-7 (1995). 31.Xie, S. et al. Genotoxic stress-induced activation of Plk3 is partly mediated by Chk2. Cell Cycle 1, 424-9 (2002). 32.Habedanck, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7, 1140-6 (2005). 33.do Carmo Avides, M., Tavares, A. & Glover, D. M. Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nat Cell Biol 3, 421-4 (2001). 34.Ohkura, H., Hagan, I. M. & Glover, D. M. The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev 9, 1059-73 (1995). 35.Sanchez, Y. et al. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286, 1166-71 (1999). 36.Roshak, A. K. et al. The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase. Cell Signal 12, 405-11 (2000). 37.Yuan, J. et al. Cooperative phosphorylation including the activity of polo-like kinase 1 regulates the subcellular localization of cyclin B1. Oncogene 21, 8282-92 (2002). 38.Descombes, P. & Nigg, E. A. The polo-like kinase Plx1 is required for M phase exit and destruction of mitotic regulators in Xenopus egg extracts. EMBO J. 17, 1328-35 (1998). 39.Carmena, M. et al. Drosophila polo kinase is required for cytokinesis. J Cell Biol 143, 659-71 (1998). 40.Smits, V. A. et al. Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol 2, 672-6 (2000). 41.Wolf, G. et al. Polo-like kinase: a novel marker of proliferation: correlation with estrogen-receptor expression in human breast cancer. Pathol Res Pract 196, 753-9 (2000). 42.Yuan, J. et al. Polo-like kinase, a novel marker for cellular proliferation. Am J Pathol 150, 1165-72 (1997). 43.Takai, N. et al. Expression of polo-like kinase in ovarian cancer is associated with histological grade and clinical stage. Cancer Lett 164, 41-9 (2001). 44.Kneisel, L. et al. Expression of polo-like kinase (PLK1) in thin melanomas: a novel marker of metastatic disease. J Cutan Pathol 29, 354-8 (2002). 45.Wolf, G. et al. Prognostic significance of polo-like kinase (PLK) expression in non-small cell lung cancer. Oncogene 14, 543-9 (1997).
|