跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪輝耀
研究生(外文):Huei-yau Hung
論文名稱:分析第二型登革熱病毒殼體蛋白與hTAF7之交互作用
論文名稱(外文):Interaction Analysis between Dengue Virus type II Core Protein and hTAF7
指導教授:陳浩仁
指導教授(外文):Hau-ren Chen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:分子生物研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:52
中文關鍵詞:登革熱
外文關鍵詞:dengue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
登革熱病毒 (Dengue virus) 屬於黃熱病毒屬 (Flaviviridae),為正向單股 (positive single-stranded) 的RNA病毒,其RNA基因組的大小約是11Kb,當病毒感染到寄主細胞後可轉譯出一個多蛋白前趨物 (polyprotein, C-prM-E-NS1-NS2a-NS2b-NS3-NS4a-NS4b-NS5),此多蛋白前趨物會被病毒本身或寄主細胞的蛋白酶作用而形成個別的蛋白質。在這些蛋白中, 殼體蛋白在病毒的複製扮演著重要的角色,特別是在包覆其RNA基因組方面。根據之前研究觀察到殼體蛋白會進入到寄主細胞的細胞核和核仁內,但是其在細胞核及核仁內的孕峇握ㄡM楚。我們利用酵母菌雜合系統 (Yeast two-hybrid system) 來尋找和登革熱病毒的殼體蛋白有相互結合之蛋白,其中我們最感興趣的是hTAF7這個轉錄因子。因為hTAF7 已知會和c-Jun, Sp1, YY1, USF, CTF和腺病毒E1A 結合,並且會影響TAFII250的乙醯化能力,進而抑制MHC class I的啟動子表現。在本論文中我利用GST捉取分析法 (GST pull-down assay),共免疫沉澱法 (co-immunoprecipitation) 和免疫螢光染色 (immunostaining) 證明hTAF7確實會和病毒的殼體蛋白結合。我也利用酵母菌雜合系統去找出此兩蛋白所結合的區域,結果顯示出殼體蛋白的N端及C端序列都是和hTAF7結合所必需的,另一方面, hTAF7中央區域的胺基酸序列似乎是與殼體蛋白結合的位置。此外,我利用報導基因分析法 (reporter assay) 來探討這兩個蛋白質的結合作用對基因表現的調控,結果顯出hTAF7的確如先前的研究,會抑制MHC class I啟動子的表現,反之殼體蛋白會稍微的提高其表現。而當把表現hTAF7和殼體蛋白之質體一起轉染至細胞內, MHC class I啟動子的表現卻又會比單獨只有表現hTAF7蛋白高一些。
Dengue virus belongs to the family of Flaviviridae. The genome of Dengue virus type II is composed of a positive-stranded RNA with about 11 Kb in length. When Dengue virus infected cells, the genomic RNA would encode a polyprotein (C-prM-E-NS1-NS2a-NS2b-NS3-NS4a-NS4b-NS5) and the polyprotein could be further processed to individual protein. Among these proteins, the core protein was essential in virus assembly to ensure specific encapsidation of the viral genome. Although Dengue virus replicated in the ER, the core protein could be also detected in the nucleus and nucleolus, suggesting the core protein may have other functions. Using yeast-two hybrid with DVII core protein as a bait protein, we found several candidate genes. In these candidate genes, we were most interested in hTAF7. hTAF7 protein had been shown to interact with many transcription factors, like c-Jun, Sp1, YY1, USF, CTF and adenovirus E1A. Moreover, hTAF7 had been demonstrated to affect the acetyltransferase activity of TAFII 250, resulting in down-regulation of promoter activity of MHC class I. In this thesis, in vitro pull-down assay, in vivo co-immunoprecipitation and immunostaining were performed to demonstrate that hTAF7 could interact with DVII core protein. In addition, the binding regions between hTAF7 and DVII core protein were mapped by yeast two-hybrid. Both the N terminus and C terminus of DVII core protein were necessary to interact with hTAF7.
However, central region of hTAF7 amino acids seemed to be necessary to interact with DVII core protein. Whether DVII core protein would affect cellular gene regulation was also tested. The result of reporter assay showed that hTAF7 down-regulated MHC class I promoter as previous references shown. On the contrary, DVII core protein could up-regulate slightly the expression of MHC class I promoter. When cells were cotransfected plasmids expressing hTAF7 and DVII core protein, the expression of MHC class I promoter was up-regulated slightly than that of hTAF7 only.
Chinese abstract-------------------------------------------------------------------------------- I

Abstract------------------------------------------------------------------------------------------II

Index---------------------------------------------------------------------------------------------III

Chapter I: Introduction------------------------------------------------------------------------1
The background and clinical features of Dengue virus-----------------------------------1
The proteins of Dengue virus---------------------------------------------------------------- 3
Core----------------------------------------------------------------------------------------------3
E and M -----------------------------------------------------------------------------------------4
NS1-----------------------------------------------------------------------------------------------5
NS2b and NS3----------------------------------------------------------------------------------5
NS4b---------------------------------------------------------------------------------------------5
NS5-----------------------------------------------------------------------------------------------5
Replication cycle of Dengue virus-----------------------------------------------------------6
hTAF---------------------------------------------------------------------------------------------6
hTAF7--------------------------------------------------------------------------------------------8
Motive--------------------------------------------------------------------------------------------8

Chapter II: Materials and Methods-----------------------------------------------------------10
Plasmid preparation----------------------------------------------------------------------------10
Preparation of E.Coli competent cells-------------------------------------------------------11
E.Coli transformation--------------------------------------------------------------------------11
Yeast transformation---------------------------------------------------------------------------12
Construction of plasmids----------------------------------------------------------------------12
Purification of GST-fusion protein-----------------------------------------------------------18
In vitro transcription and translation---------------------------------------------------------19
Pull-down assay--------------------------------------------------------------------------------19
Cell culture--------------------------------------------------------------------------------------19
Transfection-------------------------------------------------------------------------------------20
Co-immunoprecipitation-----------------------------------------------------------------------20
Western Blot-------------------------------------------------------------------------------------21
Immunostaining---------------------------------------------------------------------------------20
Cytoplasmic and nuclear extract preparation-----------------------------------------------22
Reporter assay-----------------------------------------------------------------------------------22

Chapter III: Results-----------------------------------------------------------------------------23
Purification of full-length hTAF7 and truncated hTAF7 protein-------23
Physical interaction between hTAF7 and DVII Core Protein in vitro-------------------23
Interaction between hTAF7 and DVII core protein in vivo-------------------------------23
Mapping of the interaction region of DVII core protein and hTAF7--------------------24
Subcellular localization of DVII core protein and hTAF7--------------------------------24
Biochemical investigation of hTAF7 localization in the presence or absence of DVII
core protein--------------------------------------------------------------------------------------25
MHC class I promoter activity assay--------------------------------------------------------25

Chater IV: Discussion--------------------------------------------------------------------------26
hTAF7 associated with DVII core protein in vitro and in vivo---------------------------26
Colocalization between hTAF7 and DVII core protein------------------------------------27
Activity of MHC class I affected by hTAF7 and DVII core protein---------------------27

References---------------------------------------------------------------------------------------28

Figures-------------------------------------------------------------------------------------------38
Figure 1. To prove interaction between hTAF7 and DVII core protein in vitro by GST pull-down assay---------------------------------------------------------------------38
Figure 2. To prove interaction between hTAF7 and DVII core protein in vivo by coimmunoprecipitation------------------------------------------------------------39
Figure 3. To map the interaction regions between hTAF7 and DVII core protein by
yeast two-hybrid assay-------------------------------------------------------------40
Figure 4. Subcellular localization of hTAF7 itself and DVII core protein itself in
HeLa cells----------------------------------------------------------------------------41
Figure 5. Subcellular localization of hTAF7 and DVII core protein in HeLa cells---42
Figure 6. Biochemical investigation of hTAF7 localization in the presence or absence of DVII core protein----------------------------------------------------------------43
Figure 7. Regulation of MHC class I promoter by hTAF7 and/or DVII core protein-44

Appendix----------------------------------------------------------------------------------------45
Appendix Figure 1.Structure of DVII core protein----------------------------------------45

Plasmid maps-----------------------------------------------------------------------------------46
1. Rigau-Perez, J. G., G. G. Clark, D.J. Gubler, P. Reiter, E.J. Sanders, and A. V. Vorndam. 1998. Dengue and dengue haemorrhagic fever. Lancet. 352, 971~977

2. World Health Organization. Strengthening implementation of the global
strategy for Dengue fever and Dengue haemorrhagic fever, prevention and control. Report in the informal consultation. Geneva: 1999. WHO HQ; pp. 18–20.

3. Barrett A.D. 1997. Japanese encephalitis and dengue vaccines. Biologicals 25, 27~34

4. Roesel T. R. 2005. Dengue in travelers. N Engl J Med. 353:2511-3.

5. Chen LH, M. E.. Wilson. 2004. Transmission of dengue virus without a mosquito vector: nosocomial mucocutaneous transmission and other routes of transmission. Clin Infect Dis. 39:e56-e60.

6. Guzman, M. G.,and G. Kouri. 2002. Dengue: an update. Lancet Infect Dis. 2:33-42

7. Halstead S. B., and E. J. O’Rourke. 1977. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med. 146:201-17.

8. Halstead S. B. 1979. In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J Infect Dis. 140:527-33.

9. Halstead S. B. 1982. Immune enhancement of viral infection. Prog Allergy. 31:301-64.

10. Shresta, S., J. L. Kyle, P. Robert Beatty, and E. Harris. 2004. Early activation of natural killer and B cells in response to primary dengue virus infection in A/J mice. Virology. 319:262–273.

11. Lechmann, M., S. Berchtold, J. Hauber, and A. Steinkasserer. 2002. CD83 on dendritic cells: more than just a marker for maturation. Trends Immunol. 23: 273-275

12. Girdlestone, J. 1996. Transcriptional regulation of MHC class I genes. Eur. J. Immunogenet. 23:395-413.

13. Le Bouteiller, P. 1994. HLA class I chromosomal region, genes, and products: facts and questions. Crit. Rev. Immunol. 14:89-129.

14. Singer, D. S., and J. E. Maguire. 1990. Regulation of the expression of class I MHC genes. Crit. Rev. Immunol. 10:235-257.

15. Jones, M., A. Davidson, L. Hibbert, P. Gruenwald, J. Schlaak, S. Ball, G.R. Foster, and M. Jacobs. 2005. Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J. Virol. 79(9):5414-20.
16. Warke, R. V., K. Xhaja, K. J. Martin, M. F. Fournier, S. K. Shaw, N. Brizuela , Norma de Bosch , D. Lapointe , F. A. Ennis, A. L. Rothman, and I. Bosch. 2004. Dengue virus induces novel changes in gene expression of human umbilical vein endothelial cells. J. Virol. 78(9):4947-8
17. Wang, S. H., W. J. Syu, and S. T. Hu. 2004. Identification of the homotypic interaction domain of the core protein of dengue virus type 2. J Gen Virol. 85(Pt 8):2307-14.
18. Ma, L., C. T. Jones, T. D. Groesch, R. J. Kuhn, and C. B. Post. 2004. Solution structure of dengue virus capsid protein reveals another fold. Proc. Natl Acad. Sci. USA 101, 3414–3419.

19. Dokland, T., M. Walsh , J. M. Mackenzie , A. A. Khromykh , K. H. Ee , and S. Wang. 2004. West Nile virus core protein; tetramer structure and ribbon formation. Structure (Camb) 12, 1157–1163.

20. Mai, R. T., T. S. Yeh, C. F. Kao, S. K. Sun, H. H. Huang and Y. H. Wu Lee. 2005. Hepatitis C virus core protein recruits nucleolar phosphoprotein B23 and coactivator p300 to relieve the repression effect of transcriptional
factor YY1 on B23 gene expression. Oncogene. 1–15

21. Lee, M. N., Y. J. Eun, J. K. Hyun, K. J. Hong, D. Y. Yu, Y. H. Choi and K. L. Jang. 2002. Hepatitis C virus core protein represses the p21 promoter through inhibition of a TGF-ß pathway. J. Gen. Virol. 83, 2145–2151.

22. Yue, W., K. Naoya, J. Amarsanaa, N. Y. Dharel, O. Motoyuki, T. Hiroyoshi,
K. Takao and O. Masao. 2006. Hepatitis C Virus Core Protein Is a Potent
Inhibitor of RNA Silencing-Based Antiviral Response.
GASTROENTEROLOGY. 2006;130:883–892
23. Chang, C. J., H. W. Luh, S. H. Wang, H. J. Lin, S. C. Lee, and Hu ST. 2001. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein. DNA Cell Biol. 20(9):569-77.
24. Rey, F., F. Heinz., C. Mandl., C. Kunz , and S. Harrison. 1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 A˚ resolution Nature, 375 (6529), pp. 291-298.
25. Modis, Y., S. Ogata, D. Clements, and S. C. Harrison. 2003. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. U.S.A. 100 (12), pp. 6986-6991.
26. Zhang, W., P. R. Chipman, J. Corver, P. R. Johnson, Y. Zhang, S. Mukhopadhyay, T. S. Baker, J. H. Strauss, M. G. Rossmann and R. J. Kuhn. 2003. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nature Structural Biology. 10 (11), pp. 907-912.
27. Pokidysheva, E., Y. Zhang , A. J. Battisti , C. M. Bator-Kelly , P. R. Chipman , C. Xiao , G. G. Gregorio , W. A. Hendrickson , R. J. Kuhn , and M. G. Rossmann . 2006. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell. Volume 124, Issue 3, Pages 485-493.
28. Libraty, D. H., P. R. Young, D. Pickering, T. P. Endy, S. Kalayanarooj , S. Green, D. W. Vaughn, A. Nisalak, F. A. Ennis, and A. L. Rothman. 2002. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J. Infect. Dis. 186, 1165–1168.

29. Young, P.R., P.A. Hilditch, C. Bletchly, and W. Halloran. 2000. An antigen
capture enzyme-linked immunosorbent assay reveals high levels of the
dengue virus protein NS1 in the sera of infected patients. J. Clin. Microbiol. 38, 1053–1057.

30. Chua, J. J., R. Bhuvanakantham , V. T. Chow, and M. L. Ng. 2005. Recombinant non-structural 1 (NS1) protein of dengue-2 virus interacts with human STAT3 protein. Virus Research. 112, 85–94.

31. Sophie, A. L., M. T.Drouet, P. Roux, M. P. Frenkiel, M. Arborio, A. M. Durand-Schneider, M. Maurice, I. L. Blanc, J. Gruenberg, and M. Flamand. 2005. The Secreted Form of Dengue Virus Nonstructural Protein NS1 Is Endocytosed by Hepatocytes and Accumulates in Late Endosomes: Implications for Viral Infectivity. J. Virol. p. 11403–11411 Vol. 79, No. 17.

32. Valle, R.P.C., and B. Falgout. 1998. Mutagenesis of the NS3 Protease of
Dengue Virus Type 2. J. Virol. 72, 624~632.

33. Brinkworth, R., D. Fairlie, D. Leung, and P. Young. 1999. Homology model of the dengue 2 virus NS3 protease: putative interactions with both substrate and NS2B cofactor. J. Gen. Virol. 80, 1167~1177.

34. Haitao, L., S. Clum, S. You, K. E. Ebner, and R. Padmanabhan 1999. The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. J. Virol. 73, 3108~3116.

35. Yusof, R., S. Clum, M. Wetzel, H. M. K. Murthy, and R. Padmanabhan. 2000.
Purified NS2B/NS3 serine protease of dengue virus Type 2 exhibits cofactor
NS2B dependence for cleavage of substrates with dibasic amino acids in vitro.
J. Biol. Chem. 275, 9963~9969.

36. Kadare, G., and A. L. Haenni. 1997. Virus-encoded RNA helicases. J. Virol. 71, 2583~2590.

37. Kim, D.W., Y. Gwack., J. H. Han, and J. Choe. 1997. Towards defining a minimal functional domain for NTPase and RNA helicase activities of the hepatitis C virus NS3 protein. Virus Res. 49, 17~25.

38. Cui T., R. J. Sugrue, Q. Xu, A. K. Lee, Y. C. Chan, and J. Fu. 1998. Recombinant dengue virus type 1 NS3 protein exhibits specific viral RNA binding and NTPase activity regulated by the NS5 protein. Virology 246, 409~417

39. Borowski, P., A. Niebuhr, O. Mueller, M. Bretner, K. Felczak, T. Kulikowski, and H. Schmitz. 2001. Purification and characterization of West Nile virus nucleoside triphosphatase (NTPase)/helicase: evidence for dissociation of the NTPase and helicase activities of the enzyme. J. Virol. 75, 3220~3229.

40. Wengler, G.., and G. Wengler. 1993. The NS3 nonstructural protein of
flaviviruses contains an RNA triphosphatase activity. Virology 197, 265~273.

41. Munoz-Jordan, J. L., M. Laurent-Rolle, J. Ashour, L. Martinez-Sobrido, M. Ashok, W. I. Lipkin, and A. Garcia-Sastre. 2005. Inhibition of Alpha/Beta Interferon Signaling by the NS4B Protein of Flaviviruses. J. Virol. p. 8004–8013.

42. Forwood J. K., A. Brooks, L. J. Briggs, C. Y. Xiao , D. A. Jans, S. G. Vasudevan . The 37-Amino-Acid Interdomain of Dengue Virus NS5 Protein contains a Functional NLS and Inhibitory CK2 Site. 1999. Biochem Biophys Res Commum. Apr 21;257(3):731-7. .

43. Koonin, E.V. 1993. Computer-assisted identification of a putative
methyltransferase domain in NS5 protein of Faviviruses and λ2 protein of
reovirus. J. Gen. Virol. 74, 733~740

44.O'Reilly, E. K., and C.C. Kao. 1998. Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology 252, 287~303

45. Raviprakash, K., M. Sinha, C. G. Hayes, and K. R. Porter. 1998. Conversion
of dengue virus replicative form RNA (RF) to replicative intermediate (RI) by
nonstructural proteins NS-5 and NS-3. Am. J. Trop. Med. Hyg. 58, 90~95

46. Munoz-Jordan, J. L., G. G. Sanchez-Burgos, M. Laurent-Rolle, and A. Garcia-Sastre. 2003. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A. Nov 25;100(24):14333-8. Epub 2003 Nov 11.

47. Bhardwaj, S., M. Holbrook, R. E. Shope, A. D. T. Barrett, and S. J. Atowich. 2001. Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein. J. Viral. 75, 4002~4007

48. Chiu, M. W., and Y. L. Yang. 2003. Blocking the dengue virus 2 infections on BHK-21 cells with purified recombinant dengue virus 2 E protein expressed in Escherichia coli. Biochem. Biophys. Res. Commun. 309, 672~678

49. Hung, J. J., M. T. Hsieh, M. J. Young, C. L. Kao, C. C. King, and W. Chang. 2004. An external loop region of domain III of dengue virus type-2 envelope protein is serotype-specific binding to mosquito but not mammalian cells. J. Viral. 78, 378~388.

50. Modis, Y., S. D. Ogata, D. Clements, and S. C. Harrison. 2003. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. U.S.A. 100, 6986~6991.

51. Crill, W. D., and J. T. Roehrig. 2001. Monoclonal antibodies that bind to
domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to vero cells. J. Virol. 75, 7769~7773

52. Tora, L. 2002. A unified nomenclature for TATA box binding protein
(TBP)-associated factors (TAFs) involved in RNA polymerase II transcription. Genes Dev 16: 673–675

53. Orphanides, G., T. Lagrange, and D. Reinberg. 1996. The general
transcription factors of RNA polymerase II. Genes Dev. 10, 2657~2683.

54. Shen, W. C., S. R. Bhaumik, H. C. Causton, I. Simon, X. Zhu, E. G. Jennings, T. H. Wang, R. A. Young, and M. R. Green. 2003. Systematic analysis of essential yeast TAFs in genome-wide transcription and preinitiation complex assembly. EMBO J 22: 3395–3402.

55. Metzger, D., E. Scheer, A. Soldatov, and L. Tora. 1999. Mammalian TAF(II)30 is required for cell cycle progression and specific cellular differentiation programmes. EMBO J 18: 4823–4834.

56. Chen, Z., and J. L.Manley. 2000. Robust mRNA transcription in chicken DT40 cells depleted of TAF(II)31 suggests both functional degeneracy and evolutionary divergence. Mol Cell Biol 20: 5064–5076.

57. Voss, A. K., T. Thomas, P. Petrou, K. Anastassiadis, H. Scholer, and P. Gruss. 2000. Taube nuss is a novel gene essential for the survival of pluripotent cells of early mouse embryos. Development 127:5449–5461.

58. Mohan Jr WS, E. Scheer, O. Wendling, D. Metzger, and L. Tora. 2003. TAF10 (TAF(II)30) is necessary for TFIID stability and early embryogenesis in mice. Mol Cell Biol 23: 4307–4318.

59. Bourguet, W., M. Ruff, P. Chambon, H. Gronemeyer, and D. Moras. 1995. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature. 375:377–382.

60. Renaud, J. P., N. Rochel, M. Ruff , V. Vivat, P. Chambon, H. Gronemeyer, and D. Moras. 1995. Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature. 378:681–689.

61. Wagner, R. L., J. W. Apriletti, M. E. McGrath, B. L. West, J. D. Baxter, and R. J. Fletterick. 1995. A structural role for hormone in the thyroid hormone receptor.
Nature.378:690–697.
62. Mengus, G., M. May, L. Carre, P. Chambon, and I. Davidson. 1997. Human
TAFII135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells. Genes Dev. 11:1381–1395.

63. Yamit-Hezi, A., and R. Dikstein. 1998. TAFII105 mediates activation of
anti-apoptotic genes by NF-kappaB. EMBO J. 17:5161–5169.

64. Caron, C., G. Mengus, V. Dubrowskaya, A. Roisin, I. Davidson, and P. Jalinot. 1997. Human TAFII28 interacts with the human T cell leukemia virus type I Tax transactivator and promotes its transcriptional activity. Proc Natl Acad Sci USA. 94:3662–3667.

65. Wieczorek, E., M. Brand, X. Jacq, and L. Tora. 1998. Function of
TAFII-containing complex without TBP in transcription by RNA polymerase II. Nature 393, 187~191.

66. Lavigne, A. C., G. Mengus, M. May, V. Dubrovskaya, L. Tora, P. Chambon, and I. Davidson. 1996. Multiple interactions between hTAFII55, and other TFIID subunits. J. Biol. Chem. 271, 19774~19780.

67. Ogryzko, V. V., T. Kotani, X. Zhang, R. L. Schiltz., T. Howard, X.J. Yang, B. H. Howard, J. Qin, and Y. Nakatani. 1998. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94,35~44.

68. Gran, P. A., D. Schieltz, M.G. Pray-Grant, D. J. Steger, J. C. Reese., J. R. Yates, and J. L. Workman. 1998. A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell. 94,45~53.

69. Lavigne, A. C., G. Mengus, Y. G. Gangloff, J. M. Wurtz, and I. Davidson. 1999. Human TAFII55 Interacts with the Vitamin D3 and Thyroid Hormone Receptors and with Derivatives of the Retinoid X Receptor That Have Altered Transactivation Properties. Mol Cell Biol. 19(8): 5486–5494
70. Munz, C., E. Psichari, D. Mandilis, A. C. Lavigne, M. Spiliotaki, T. Oehler, I. Davidson, L. Tora, P. Angel, and A. Pintzas. 2003. TAF7 (TAFII55) plays a role in the transcription activation by c-Jun. J Biol Chem. 13;278(24):21510-6.

71. Gegonne, A., J. D. Weissman, and D. S. Singer. 2001. TAFII55 binding to TAFII250 inhibits its acetyltransferase activity. Proc. Natl Acad. Sci. U.S.A. 98, 12432~12437.

72. Weissman, J., J. Brown, T. K. Howcroft, J. Hwang, A. Chawla, P. Roche, L. Schiltz, Y. Nakatani, and D. S. Singer. 1998. HIV-1 Tat binds TAFII250 and represses TAFII250-dependent transcription of major histocompatibility class I genes. Proc. Natl. Acad. Sci. U.S.A. 95, 11601~11606.

73. Unphy, E. L., T. Johnson, S. S. Auerbach, and E. H. Wang. 2000. Requirement for TAFII250 Acetyltransferase Activity in Cell Cycle Progression. Mol. Cell. Biol. 20, 1134~1139.

74. Chiang, C. M. and R.G. Roeder. 1995. Cloning of an intrinsic human TFIID
subunit that interacts with multiple transcriptional activators. Science 267,
531~536.

75. Oqtaderi, Z., J. D. Yale, K. Struhl, and S. Buratowski. 1996. Yeast homologues of higher eukaryotic TFIID subunits. Proc. Natl Acad. Sci. U.S.A. 93, 14654~14658.

76. Austen, M., B. Lüscher, and J. M. Lüscher-Firzlaff. 1997. Characterization of the Transcriptional Regulator YY1. J. Biol. Chem. 272, 1709~1717.

77. Zhu, N., A. Khoshnan, R. Schneider, M. Matsumoto, G. Dennert, C. Ware,
and M. M. C. Lai. 1998.Hepatitis C virus core protein binds to the
cytoplasmic domain of tumor necrosis factor (TNF) receptor I and enhances
TNF- ?mediated apoptosis. J. Virol. 72:3691–3697.

78. Ray, R. B., R. Steele, A. Basu , K. Meyer , M. Majumder, A. K. Ghosh , and R. Ray . 2002. Distinct functional role of Hepatitis C virus core protein on NF-kappaB regulation is linked to genomic variation. Virus Res. Jul; 87(1):21-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文