跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 21:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭燕婷
研究生(外文):Yen-ting Cheng
論文名稱:1.BacilluspumilusNCCU的木聚素水解酵素蛋白純化、物化性質分析、蛋白質體鑑定和基因轉殖2.BacillusmegateriumNCCU的金屬蛋白水解酶物化性質分析、蛋白質體鑑定和基因轉殖
論文名稱(外文):1.Purification, characterization and proteomic identification of a xylanase and cloning of its gene from Bacillus pumilus NCCU.2.Characterization and proteomic identification of a metalloprotease and cloning of its gene from Bacillus megaterium NCCU.
指導教授:曾銘仁
指導教授(外文):Min-jen Tseng
學位類別:碩士
校院名稱:國立中正大學
系所名稱:分子生物研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:110
中文關鍵詞:木聚素水解酵素金屬蛋白酶
外文關鍵詞:metalloproteasebacillus pumilusbacillus megateriumxylanase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:872
  • 評分評分:
  • 下載下載:139
  • 收藏至我的研究室書目清單書目收藏:0
1.Bacillus pumilus NCCU的木聚素水解酵素蛋白純化、物化性質分析、蛋白質體鑑定和基因轉殖

摘要

Bacillus pumilus NCCU,空氣中漂流的微生物,會分泌木聚素水解酵素到培養液中,利用硫酸銨將此酵素沈澱下來並用離子交換樹脂(mono-S)進一步純化此酵素。此純化的木聚素水解酵素的分子量為26 kDa,且在含有木聚素的 zymogram gel 中表現出活性。在37 ℃下此酵素對於木聚素的水解作用在 pH 值 5.0到9.0 之間活性最佳。在 pH 值為7的情況下,酵素作用最佳溫度為50 ℃且在50 ℃時此酵素的半衰期為40分鐘。此純化的酵素在50 ℃, pH 值為7情況下和受質 birchwood xylan 作用得到的 Km 值為2.49 mg,Vmax 值為 1.29 μmole min-1 μg-1,由於純化前的木聚素水解酵素在 zymogram gel 上出現兩個有木聚素水解活性的蛋白質,而這兩個蛋白質與SDS-PAGE上的蛋白質做比對後,將對到的蛋白質由SDS-PAGE 上的切出並利用蛋白質體方法分析。分子量為26 kDa的木聚素水解酵素比對到一個由 Bacillus pumilus 所分泌的 endo-1,4-β-xylanase [xyn A, Accession No. CAA25278]酵素,另外一個分子量比較高的蛋白質比對到Bacillus subtilis [Accession No. CAA97612] and Bacillus amyloliquefaciens FZB42 [Accession No. CAE11246]的 ynfF木聚素水解酵素。根據蛋白質體分析結果,以所比對到的 Bacillus pumilus的 xyn A的胜肽序列來合成 N- 端變質密碼子引子(degenerate primer),並依據此類木聚素水解酵素於 Bacilli 族群中保留的胜肽序列合成 C- 端變質密碼子引子。由這兩個引子在聚合酶連鎖反應下得到的214 bp長的 DNA產物的核酸序列和轉譯的胺基酸序列更確定26 kDa的木聚素水解酵素跟Bacillus pumilus 所分泌的 xyn A 幾乎一樣,根據 xyn A核酸序列合成N-和C-端特定的引子,利用聚合酶連鎖反應得到包含核糖體結合位置的序列的整段DNA片段。這個26 kDa的木聚素水解酵素含有687個核酸,並可譯出一個含有228個胺基酸的蛋白,且與已知的B. pumilus 上的xyn A 基因高度相似。

2.Bacillus megaterium NCCU的金屬蛋白水解酶物化性質分析、蛋白質體鑑定和基因轉殖
摘要
Bacillus megaterium NCCU, 在空氣漂流的微生物,會分泌蛋白分解酶到培養液中,利用硫酸銨將此酵素沈澱下來以便做蛋白分解酶活性實驗。金屬離子,鈣、鈉、鎂、鋅和錳離子會增加蛋白分解酶活性二到三倍,然而三價鐵離子會強烈抑制酵素活性。至於鎳離子只會稍微抑制酵素活性,而鈷和鉀離子對蛋白分解酶的活性沒有顯著影響。在含有 gelatin 的 zymogram gel上 有五條清澈的活性區帶,而在含有 casein 的 zymogram gel上 則有四條。有一條最清澈的活性區帶同時出現在兩種 zymogram gel,分子量大約是37 kDa。為了分析此蛋白質,將在SDS-PAGE上相對位置的蛋白切出並利用 in-gel digstion 和串聯質譜儀分析。分析的結果發現這個蛋白質符合B. megaterium的 Bacillolysin (中性蛋白分解酶) [Accession No. Q00891]。根據這個蛋白質的核酸序列合成N- 和C- 端特定的引子,利用聚合酶連鎖反應取得包含核糖體結合位置的序列整段DNA片段。這個蛋白分解酶含有1709個核酸,並可譯出一個含562個氨基酸的蛋白質,且與B. megaterium的nprM 基因高度相似。
1.Purification, characterization and proteomic identification of a xylanase and cloning of its gene from Bacillus pumilus NCCU.

Abstract

Bacillus pumilus NCCU, an air-borne microorganism, secreted xylanase into media. A 26 kDa xylanase was precipitated by ammonium sulfate fractionation and purified to homogeneity using a mono-S ion exchanger which showed enzymatic activity on xylan-zymogram. This xylanase showed broad optimal pH of 5.0 to 9.0 toward hydrolysis of birchwood xylan at 37 ℃. The optimal temperature for the enzyme activity was 50 ℃ at pH 7 and preincubation of this xylanase at 50 ℃displayed a half-life of 40 min. For birchwood xylan, this purified xylanase gave a Km value of 2.49 mg and a Vmax of 1.29 μmole min-1 μg-1 when the reaction was carried out at 50 ℃ and pH 7. For identification two protein bands on SDS-PAGE corresponding to the active xylanases on zymogram gel were incised and analyzed by proteomic approach. This 26 kDa xylanase matched to an endo-1,4-β-xylanase [xynA, Accession No. CAA25278] from Bacillus pumilus and the protein with higher molecular weight of 42 kDa matched to a ynfF xylanase of Bacillus subtilis [Accession No. CAA97612] and that of Bacillus amyloliquefaciens FZB42 [Accession No. CAE11246]. Based on a matched peptide on xynA of B. pumilus, an N-terminal degenerate primer was synthesized and a C-terminal degenerate primer was designed according to a C-terminal conserved sequence among closely relative xylanases of Bacilli family. The sequence of the PCR products from these two degenerate primers further confirmed this 26 kDa-xylanase indeed is highly similar with xynA xylanase of B. pumilus. According to the published DNA sequences of closely relative xylanases in NCBI database, the N- and C- termini specific primers corresponding to this xynA gene were synthesized and used in a PCR reaction to obtain a DNA fragment containing whole open-reading frame (ORF) including the ribosome binding site. This protein consists of 687 nucleotides and encoded 228 amino acid residues and highly homologous with known xyn A genes of B. pumilus around the world.

2.Characterization and proteomic identification of a metalloprotease and cloning of its gene from Bacillus megaterium NCCU.
Abstract

Bacillus megaterium NCCU, an air-borne microorganism, secreted proteases into media that were precipitated by ammonium sulfate for protease activity assay. In the presence of 1 mM metal ions Ca2+, Na+, Mg2+, Zn2+, Mn2 the activity of crude protease increased two to three folds, whereas strong inhibition of enzyme activity was observed in the presence of Fe3+. The nickel ion slightly inhibited the enzyme activity but Co2+ and K+ did not obviously influence the protease activity. On a gelatin zymogram gel five clear bands were shown and four clear bands presented on a casein zymogram gel. The clearest bands appeared on both zymogram gels showed the same molecular mass of 37 kDa. In order to identify this protease, it was incised and analyzed by in-gel trypsin digestion and ESI-QUAD-TOF. The MS/MS data of this 37 kDa protein matched to a Bacillolysin (neutral protease) from B. megaterium [Accession No. Q00891]. According to the DNA sequence of Bacillolysin [Accession No. X75070] in NCBI database, the N- and C- termini specific primers corresponding to this gene were synthesized and used in a PCR reaction to obtain the DNA fragment containing whole open-reading frame (ORF) including the ribosome binding site. This protein consists of 1736 nucleotides and encoded 562 amino acid residues and highly homologous with known nprM gene of B. megaterium [Accessiom No. X75070].
TABLE OF CONTENTS

SECTION Ι: Xylanase
Introduction 1
Environmental Microorganisms 1
Xylan 1
Xylanase 2
Regulation of Xylanase Gene 3
Classification of Xylanase 4
Structure of Xylanases 5
Catalytic Sites and Mechanism for Xylanases 6
Application of Xylanases 6

Materials and Methods 8
Screening Environmental Microorganisms Produce Xylanase 8
Growth of B. pumilus NCCU and Production of Xylanase 9
Measurement of Xylanase Activity by DNS Reagent 9
The Standard Curve for Unit Determination of Xylanase 10
Ammonium Sulfate Precipitation 10
Protein Precipitation by TCA Method 10
Xylanase Purification-FPLC 11
Measurement of Protein Concentration by Bio-Rad protein assay 12
SDS-Polyacrylamide Electrophoresis 12
Zymogram for Xylanase Activity 14
Effect of pH on Xylanase Activity 14
Effect of Temperature on Xylanase Activity 15
The Thermostability of Xylanase at 50 ℃ 15
Determination of Enzyme Kinetics 15
Chromosomal DNA Purification by Commercial Kit (UltraCleanTM Microbial
DNA Isolation Kit) 16

Preparation of Bacterial Chromosomal DNA by Enzymatic Method 17
Identification of Bacteria by 16S rDNA Sequence 18
Agarose Gel Electrophoresis 18
DNA Electroelution 19
DNA Ligation 20
Competent Cell Preparation-Rubidium Chloride Method for E.coli XL10-Gold 20
Competent E.coli Preparation for Electroporation (E.coli strain- XL1-Blue
MRF’) 22

Chemical Transformation (E.coli strain XL-10 GOLD) 23
Transformation by Electroporation- Bio-Rad Gene Pulser 24
Plasmid Mini-Preparation 25
Proteomic Analysis 26
Cloning of Bacillus pumilus NCCU Xylanase gene 28

Result 29
Microorganism Screening and Identification 29
Purification of Xylanase 29
Effect of pH on Enzyme Activity 30
Effect of Temperature on Enzyme Activity and Thermostability 30
Kinetics Parameters 31
Identification of Xylanases by Proteomic Approach 31
Cloning of Bacillus pumilus NCCU Xylanase gene 32
Comparison of Amino Acid Sequences of B. pumilus NCCU Xylanase with 33
those of Bacilli Family

Discussion 34

Reference 37




SECTION ΙI: Protease
Introduction 41
Protease 41
Classification of Protease 41
Metalloprotease 42
Mechanism of Action of Metalloprotease 42
Application of Protease 43

Materials and Methods 45
Screening Environmental Microorganisms Produce Protease 45
Growth of B. megaterium NCCU and Production of Protease 45
Measurement of Protease Activity by Azocasein Hydrolysis 46
Effect of metal ions on protease activity 46
Zymogram 46
Identification of Bacteria by 16S rDNA 47
Proteomic Analysis 47
Cloning of Bacillus megaterium NCCU protease gene 48

Results 49
Microorganism Screening and Identification 49
Effect of Metal Ions on Protease Activity 49
Zymogram Analysis 50
Identification of Protease by Proteomic Approach 50
Cloning the Protease gene of Bacillus megaterium NCCU 51
Comparison of Amino Acid Sequences of B. megaterium NCCU Protease 52
with those of Bacilli Family

Discussion 53

Reference 55

Table 57
Table 1. List of primers in this thesis 57
Table 2. Purification steps of 26 kDa xylanases isolated from Bacillus pumilus NCCU
58
Figure 59
Fig. 1. Structure of xylan and the sites of its attack by xylanolytic enzymes 59
Fig. 2. Hypothetical model for xylanase gene regulation in bacteria 60
Fig. 3. The represent active three-dimensional structures of families 11 and 10 xylanaes 61
Fig. 4. Reaction mechanism by Bacillus circulans xylanase (1XNB) 62
Fig. 5. The parameters used in MASCOT MS/MS ion search program 63
Fig. 6. Schematic illustration of the proposed mechanism of catalysis for
thermolysin 64
Fig. 7. The microorganisms exhibited xylanase activity on xylan-TB plate 65
Fig. 8. Comparison of nucleotide sequence of 16S rDNA from microorganism 66
NCCU 7 with published data
Fig. 9. Electrophoretic analysis of crude and purified xylanases from
B. pumilus NCCU 67
Fig. 10. The enzymatic activity of the purified 26 kDa xylanase measured 68
under different pH conditions
Fig. 11. Influence of the temperature on the activity of purified 26 kDa xylanase 69
Fig. 12. Thermostability of purified 26 kDa xylanase 70
Fig. 13. Double reciprocal plot for determining the Vmax and Km values 71
of xylanase
Fig. 14. The MS/MS data of the purified xylanase with lower molecular weight 72
(26 kDa) secreted by B. pumilus
Fig. 15. The MS/MS data of the xylanase with higher molecular weight 73
(42 kDa) secreted by B. pumilus
Fig. 16. Comparison of nucleotide sequence of the specific DNA fragment with
endo-1,4-xylanase of Bacillus pumilus 74
Fig. 17. Comparison of deduced amino acids of the specific DNA fragment with endo-1,4-xylanase of Bacillus pumilus 74
Fig. 18. Nucleotide sequence of xylanase (xynA) gene and its deduced 75
amino acid sequence from Bacillus pumilus NCCU
Fig. 19. Alignment of the deduced amino acid sequence of xynA of 76
Bacillus pumilus NCCU with xylanases of Bacillus family
Fig. 20. The microorganisms exhibited protease activity on skim milk-TB plate 77
Fig. 21. Aligment of 537 bp nucleotide sequence of 16S rDNA from 78
mcroorganism NCCU 4 with same region of 16 S rDNA from
Bacillus megaterium
Fig. 22. Effect of metal ions on the protease activity produced from 79
B. megateriums NCCU
Fig. 23. Electrophoretic analysis of crude proteases from
B. megaterium NCCU 80

Appendix
86
REFERENCES

Ahring BK, Licht D, Schimdt AS, Sommer P, Thomsen AB (1999) Production of ethanol from wet oxidised wheat straw by Thermoanaerobacter mathranii. Bioresource Technol. 68:3-9.
Belancic A, Scarpa J, Peirano A, Diaz R, Steiner J, Eyzaguirre J (1995) Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. J. Biotechnol. 41:71-9.
Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol. 3:286-290.
Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72:248-254.
Busse HJ, Denner EB, Lubitz W (1996) Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. J. Biotechnol. 47:3-38.
Chang P, Tsai WS, Tsai CL, Tseng MJ (2004) Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus. Biochem. Biophys. Res. Commun. 319:1017-25.
Chen YL, Tang TY, Cheng KJ (2001) Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can. J. Microbiol. 47:1088-94.
Clarke AJ, Bray MR, Strating H (1993) ß-glucosidases, ß-glucanases, and xylanases. In Biochemistry and Molecular Biology, ACS Symposium Series 533. In Clarke, A. J. et al. (ed.) American Chemical Society, USA p. 27-41.
Cleland WW (1977) Determining the chemical mechanisms of enzyme-catalyzed reactions by kinetic studies. Adv. Enzymol. Relat. Areas Mol. Biol. 45:273-387.
Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29:3-23.
Conrad D, Nothen W (1984) Hydrolysis of xylodextrins (DP 2-6) by xylanolytic enzymes from Aspergillus niger. Proc. 3rd Eur. Congr. Biotechnol. 2:169-177.
Fukusaki E, Panbangred W, Shinmyo A, Okada H (1984) The complete nucleotide sequence of the xylanase gene (xynA) of Bacillus pumilus. FEBS Lett. 171:197-201.
Godfrey T (2003) The enzymes market for grain processing. In Recent Advances in Enzymes in Grain Processing. In Courtin, C.M., Veraverbeke, W.S. and Delcour, J.A. (ed.) Kat. Univ. Leuven, Leuven. p. 401-406.
Gomes DJ, Gomes J, Steiner W (1994) Factors influencing the induction of endo-xylanase by Thermoascus aurantiacus. J. Biotechnol. 33:87-94.
Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP (1989) Cellulase families revealed by hydrophobic cluster analysis. Gene 81:83-95.
Henrissat B, Coutinho PM (2001) Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods Enzymol. 330:183-201.
Hoch. JA (1991) Genetic analysis in Bacillus subtilis. Methods Enzymol. 204:305-320.
Jeffries TW (1996) Biochemistry and genetics of microbial xylanases. Curr. Opin. Biotechnol. 7:337-42.
Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186:1084-96.
Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23:411-56.
Kuno A, Kaneko S, Ohtsuki H, Ito S, Fujimoto Z, Mizuno H, Hasegawa T, Taira K, Kusakabe I, Hayashi K (2000) Novel sugar-binding specificity of the type XIII xylan-binding domain of a family F/10 xylanase from Streptomyces olivaceoviridis E-86. FEBS Lett. 482:231-6.
La Grange DC, Claeyssens M, Pretorius IS, Van Zyl WH (2000) Coexpression of the Bacillus pumilus beta-xylosidase (xynB) gene with the Trichoderma reesei beta xylanase 2 (xyn2) gene in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 54:195-200.
Lebeda A, Luhova L, Sedla M, Jan D (2001) The role of enzymes in plant-fungal pathogens interactions. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 108:89-111.
Leggio LL, Jenkins J, Harris GW, Pickersgill RW (2000) X-ray crystallographic study of xylopentaose binding to Pseudomonas fluorescens xylanase A. Proteins 41:362-73.
Maier R, Pepper IL, Gerba CP (2000) Chap. 1 Introduction to environmental microbiology. In Maier R et al. (ed.) Environmental Microbiology. Academic Press. p. 1-6.
Miller GL (1959) Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 31:426-428.
Nakai R, Wakabayashi K, Asano T, Aono R, Horikoshi K, Nakamura S (1994) Nucleotide sequence and mutational analysis of the gene encoding the novel alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Nucleic Acids Symp. Ser. 31:235-236.
Prade RA (1995) Xylanases: from biology to biotechnology. Biotech. Genet. Eng. Rev. 13:100–131.
Puls J (1997) Chemistry and biochemistry of hemicelluloses: relationship between hemicellulose structure and enzymes required for hydrolysis. Macromol. Symp. 120:183-196.
Puls J, Schmidt O, Granzow C (1987) Glucuronidase in two microbial xylanolytic systems. Enzyme Microb. Technol. 9: 83-88.
Rose M, Entian KD (1996) New genes in the 170 degrees region of the Bacillus subtilis genome encode DNA gyrase subunits, a thioredoxin, a xylanase and an amino acid transporter. Microbiology 142:3097-101.
Royer JC, Nakas JP (1989) Xylanase production by Trichoderma longibrachiatum. Enzyme Microb. Technol. 11:405-410.
Saier MH, Fagan MJ (1992) Catabolic repression. In Encyclopaedia of Microbiology Vol. 1. In Lederberg, J. (ed.) Academic Press, San Diego, CA. p. 431-442.
Sapag A, Wouters J, Lambert C, de Ioannes P, Eyzaguirre J, Depiereux E (2002) The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. J. Biotechnol. 95:109-31.
Shoham Y, Schwartz Z, Khasin A, Gat O, Zosim Z, Rosenberg E (1992) Delignification of wood pulp by a thermostable xylanase from Bacillus stearothermophilus strain T-6. Biodegradation 3:207-218.
Silhavy TJ, Berman ML, Enquist LW (1984) Experiments With Gene Fusions. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol. Rev. 27:3-16.
Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22:33-64.
Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev. Biotechnol. 17:39-67.
Tantipaiboonwong P, Sinchaikul S, Sriyam S, Phutrakul S, Chen ST (2005) Different techniques for urinary protein analysis of normal and lung cancer patients. Proteomics 5:1140-9.
Törrönen A, Harkki A, Rouvinen J (1994) Three dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei - two conformational states in the active site. EMBO J. 13:2493-2501.
Wakarchuk WW, Campbell RL, Sung WL, Davoodi J, Yaguchi M (1994) Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Prot. Sci. 3:467-475.
Wang P, Ali S, Mason JC, Sims PFG, Broda P (1992) Xylanases from Streptomyces cyaneus. In Xylans and Xylanases. In Visser, J., Kusters-van Someran, M. A., and Voragen, A. G. J. (ed.) Elsevier Science Publishers, Amsterdam BV. p. 225-234.
Wong KK, Tan LU, Saddler JN (1988) Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol. Rev. 52:305-17.
Wu Z, Wang XR, Blomquist G (2002) Evaluation of PCR primers and PCR conditions for specific detection of common airborne fungi. J. Environ. Monit. 4:377-82.
Yu JH, Park YS, Yum DY, Kim JM, Kong IS, Bai DH (1993) Nucleotide sequence and analysis of a xylanase gene (xynS) from alkali-tolerant Bacillus sp. YA-14 and comparison with other xylanases. J. Microbiol. Biotechnol. 3:139-145.
Zhao Y, Chany CJ, 2nd, Sims PF, Sinnott ML (1997) Definition of the substrate specificity of the 'sensing' xylanase of Streptomyces cyaneus using xylooligosaccharide and cellooligosaccharide glycosides of 3,4-dinitrophenol. J. Biotechnol. 57:181-90.

REFERENCE

Barrett AJ (1994) Classification of peptidases. Methods Enzymol. 244:1-15.
Busse HJ, Denner EB, Lubitz W (1996) Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. J. Biotechnol. 47:3-38.
Donovan WP, Tan Y, Slaney AC (1997) Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein. Appl. Environ. Microbiol. 63:2311-7.
Fox JW, Shannon JD, Bjarnason JB (1991) Proteinases and their inhibitors in biotechnology. Enzymes in biomass conversion. ACS Symp. Ser. 460:62-79.
Godfrey T, West SI (1996) Introdution to industrial enzymology. In Godfrey, T. and West, SI. (ed.) Industrial Enzimology. 2nd ed. MacMillam Publishers Inc., New York, N.Y. p. 1-8.
Hibbs MS, Hasty KA, Seyer JM, Kang AH, Mainardi CL (1985) Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J. Biol. Chem. 260:2493-2500.
Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Marston CK, De BK, Sacchi CT, Fitzgerald C, Mayer LW, Maiden MC, Priest FG, Barker M, Jiang L, Cer RZ, Rilstone J, Peterson SN, Weyant RS, Galloway DR, Read TD, Popovic T, Fraser CM (2004) Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. U S A 101:8449-54.
Holmes MA, Matthews BW (1981) Binding of hydroxamic acid inhibitors to crystalline thermolysin suggests a pentacoordinate zinc intermediate in catalysis. Biochem. 20:6912-20.
Kalisz MH (1988) Microbial proteinases. Adv. Biochem. Eng. Biotechnol. 36:17-55.
Kuhn S, Fortnagel P (1993) Molecular cloning and nucleotide sequence of the gene encoding a calcium-dependent exoproteinase from Bacillus megaterium ATCC 14581. J. Gen. Microbiol. 139:39-47.
Meinhardt F, Busskamp M, Wittchen KD (1994) Cloning and sequencing of the leu C and npr M genes and a putative spo IV gene from Bacillus megaterium DSM319. Appl. Microbiol. Biotechnol. 41:344-51.
Morihara K, Oda K (1993) Microbial degradation of proteins. In Guenther W (ed.) Microbial degradation of natural products. VCH Publishers, Weinheim, Germany p. 293-364.
Narasaki R, Kuribayashi H, Shimizu K, Imamura D, Sato T, Hasumi K (2005) Bacillolysin MA, a novel bacterial metalloproteinase that produces angiostatin-like fragments from plasminogen and activates protease zymogens in the coagulation and fibrinolysis systems. J. Biol. Chem. 280:14278-87.
Okada Y, Nagase H, Harris ED, Jr. (1986) A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization. J. Biol. Chem. 261:14245-55.
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62:597-635.
Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Methods Enzymol. 248:183-228.
Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch JD, Smith KL, Schupp JM, Solomon D, Keim P, Fraser CM (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296:2028-33.
Sarath G, Motte R, Wagner F (1989) In: Proteolytic Enzymes: A practical approach. Oxford Inc., England p. 25-42.
Shannon JD, Baramova EN, Bjarnason JB, Fox JW (1989) Amino acid sequence of a Crotalus atrox venom metalloproteinase which cleaves type IV collagen and gelatin. J. Biol. Chem. 264:11575-83.
Takaku H, Kodaira S, Kimoto A, Nashimoto M, Takagi M (2006) Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and -independent approaches. J. Biosci. Bioeng. 101:42-50.
Weaver LH, Kester WR, Matthews BW (1977) A crystallographic study of the complex of phosphoramidon with thermolysin. A model for the presumed catalytic transition state and for the binding of extended substances. J. Mol. Biol. 114:119-32.
Wilhelm SM, Collier IE, Kronberger A, Eisen AZ, Marmer BL, Grant GA, Bauer EA, Goldberg GI (1987) Human skin fibroblast stromelysin: structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells. Proc. Natl. Acad. Sci. U S A 84:6725-9.
Wu Z, Wang XR, Blomquist G (2002) Evaluation of PCR primers and PCR conditions for specific detection of common airborne fungi. J. Environ. Monit. 4:377-82.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文