跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/27 12:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇福隆
研究生(外文):Fu-long Su
論文名稱:以PBCA、MMA-SPM和SLN為Stavudine、Delavirdine及Saquinavir載體之生體外血腦阻障模型穿透
論文名稱(外文):Transport of Stavudine、Delavirdine and Saquinavir across an In Vitro model of the Blood-Brain Barrier by PBCA、MMA-SPM Nanoparticles and SLN
指導教授:郭勇志郭勇志引用關係
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:152
中文關鍵詞:StavudineDelavirdineSaquinavirPolybutylcyanoacrylateMethylmethacrylate-sulfopropylmethacrylateSolid lipid nanoparticlesnanoparticlesBlood-brain barrierHuman brain microvascul
外文關鍵詞:Stavudine、Delavirdine、Saquinavir、Polybutylcy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用polybutylcyanoacrylate (PBCA) nanoparticles、methylmethacrylate-sulfopropylmethacrylate (MMA-SPM) nanoparticles和solid lipid nanoparticles (SLN)為stavudine (D4T)、delavirdine (DLV)和saquinavir (SQV)載體,進行藥物對奈米粒子的負載效率(loading efficiency)及生體外(in vitro)血腦阻障(blood-brain barrier, BBB)模型的藥物釋放(drug release)研究,同時為了更接近人體狀態與符合組織工程概念,因此是以繼代培養(subculture)人腦微血管內皮細胞(human brain microvessel endothelial cells, HBMECs)來建立本模型。藥物在PBCA和MMA-SPM奈米粒子上的負載效率大小次序:D4T > DLV > SQV;D4T負載在奈米粒子上的負載效率大小次序:MMA-SPM > PBCA,DLV和SQV負載在奈米粒子上的負載效率大小次序:PBCA > MMA-SPM;藥物負載在PBCA和MMA-SPM奈米粒子上的負載效率隨奈米粒子粒徑增大而減少。SLN包覆率大小次序:SQV > DLV > D4T,SLN粒徑隨包覆率增加而變大。單純藥物穿透率大小次序:D4T > SQV > DLV;一般而言在穿透提升率大小次序:PBCA > SLN>MMA-SPM,藥物負載在PBCA和MMA-SPM奈米粒子上的穿透率隨奈米粒子粒徑增大而降低;藥物包覆在SLN內隨粒子粒徑增大而降低。此外PBCA和MMA-SPM奈米粒子在同一粒徑下負載效率隨載體量增加而增加,但不影響BBB穿透率;同時使用tripalmitin和cacao butter在不同比例下為中間相合成不同粒徑之SLN,其中DLV和SQV隨cacao butter量增加包覆率下降,D4T則反之,並於4 ℃環境下儲存六週後粒子穩定度良好。
Transport study of stavudine (D4T), delavirdine (DLV) and saquinavir (SQV) by polybutylcyanoacrylate (PBCA) nanoparticles (NPs), methylmethacrylate-sulfopropylmethacrylate (MMA-SPM) nanoparticles and solid lipid nanoparticles (SLN) across the in vitro blood brain barrier (BBB) model system was presented and investigation loading efficiency (LE) of there the durgs onto the three NPs. At the same time for similar human state and accorder with the tissue engineering concept, through human brain microvessel endothelial cells (HBMECs) were cell lines by subculture technique. The drugs LE on PBCA and MMA-SPM series : D4T > DLV > SQV; D4T loaded on NPs series : MMA-SPM > PBCA, DLV and SQV loaded on NPs : PBCA > MMA-SPM; LE decreased following by the diameter of PBCA and MMA-SPM NPs increased. The drugs entrapment efficiency (EE) in SLN series : SQV > DLV > D4T, SLN of diameter enhanced following by the EE. The drugs permeabilities series: D4T > SQV > DLV; the drugs permeabilities enhanced across the BBB by NPs series: PBCA > SLN>MMA-SPM, permeabilities decreased following by the diameter of PBCA and MMA-SPM NPs increased ; SLN is opposite. In addition, PBCA and MMA-SPM under the same diameter LE enhanced following by the carrier amount increase , but does not influence the BBB permeability; Use different Proportion of tripalmitin and cacao butter formate as internal phase synthesized SLN, DLV and SQV EE decreased following by cacao butter amount increased, D4T on the contrary, and store the steady degree of particle after six weeks well under 4 degrees Centigrade of environment.
中文摘要………………………………………………………........Ι
英文摘要…………………………………………………………..Ш
目錄………………………………………………………………..V
圖目錄…………………………………………………………......ΙΧ
表目錄……………………………………………………………ΧП
第一章 緒論
1.1愛滋病與人類免疫不全逆轉錄病毒…………………………..1
1.2藥物載體………………………………………………………..1
1.3 研究動機與目的…………………………………………….....3
第二章 文獻回顧
2.1 血腦阻障…………………………...…………………………..6
2.2 生體外血腦阻障模型………………………………………….7
2.3 Stavudine 、Delavirdine 和Saquinavir藥物簡介…………....9
2.3.1 Stavudine…………………………………………………...9
2.3.2 Delavirdine………………………………………………..10
2.3.3 Saquinavir…………………………………………………11
2.4藥物載體與血腦阻障………………………………………….12
2.4.1 PBCA奈米粒子…………………………………………..12
2.4.2 MMA-SPM奈米粒子…………………………………….14
2.4.3 SLN………………………………………………………..15
2.5表面電荷和親疏性與血腦阻障……………………………….16
2.6電磁場與血腦阻障…………………………………………….18
第三章 實驗材料、儀器、原理及方法
3.1 實驗材料……………………………………………………...22
3.1.1人腦微血管內皮細胞培養PC膜表面預處理所用材料..………………………………………………………..22
3.1.2人腦微血管內皮細胞繼代培養所用材料……………….22
3.1.3人腦微血管內皮細胞保存所用材料……………………..23
3.1.4免疫螢光法所用的材料…………………………………..23
3.1.5奈米粒子合成與乾燥所用材料…………………………..23
3.1.5.1 PBCA奈米粒子合成………………………………...23
3.1.5.2 MMA-SPM copolymer奈米粒子合成………………24
3.1.5.3 SLN合成……………………………………………...24
3.1.5.4 PBCA、MMA-SPM奈米粒子和SLN的乾燥所用材料……………………………………………………..25
3.1.6 藥物的吸收波長量測所用材料…………………………25
3.1.7 抗HIV藥負載所用材料…………………………………25
3.1.8 奈米粒子表面包覆所用材料……………………………27
3.1.9抗HIV藥負載負載於奈米粒子之FT-IR分析所用材料..27
3.1.10藥物穿透實驗所用材料………………………………...27
3.1.11螢光奈米粒子與螢光SLN………………………………27
3.1.12 毒性測試與電阻測定…………………………………..28
3.1.13其他實驗器具和耗材…………………………………....28
3.2 實驗儀器……………………………………………………...30
3.3 實驗原理及方法……………………………………………...33
3.3.1人腦內皮細胞培養PC膜的表面預處理……………….....33
3.3.2 培養細胞用的培養基配置步驟…………………………33
3.3.3 冷凍液配製步驟…………………………………………34
3.3.4 Gelatin 配製步驟………………………………………...34
3.3.5 Trypsin-EDTA 配製步驟………………………………...34
3.3.6 繼代培養之培養皿預處理………………………………34
3.3.7 人腦微血管內皮細胞繼代培養…………………………35
3.3.8 人腦微血管內皮細胞培養………………………………36
3.3.8.1 人腦微血管內皮細胞培養PC膜之實驗……………36
3.3.8.2 人腦微血管內皮細胞緊密接合(tight-junction, TJ)特性的鑑定……………………………………………36
3.3.9 奈米粒子合成……………………………………………37
3.3.9.1.1 PBCA奈米粒子合成………………………………37
3.3.9.1.2 螢光PBCA奈米粒子合成………………………...38
3.3.9.2.1 MMA-SPM奈米粒子合成………………………...38
3.3.9.2.2 螢光MMA-SPM奈米粒子製備…………………..38
3.3.9.3.1 SLN合成…………………………………………...39
3.3.9.3.2 螢光SLN製備……………………………………...40
3.3.10 抗HIV藥的吸收波長量測……………………………...40
3.3.11 奈米粒子負載與包覆……………………………….….40
3.3.11.1 抗HIV藥在PBCA和MMA-SPM上負載及奈米粒子包覆………………………….……………………...40
3.3.11.2 抗HIV藥被包覆在SLN………………………….…40
3.3.11.3 以不同中間相比例合成SLN來包覆藥物................41
3.3.11.4 抗HIV藥負載於奈米粒子之FT-IR分析…………..42
3.12 抗HIV藥的生體外BBB模型穿透實驗……………………..42
3.3.12.1 D4T、DLV和SQV的穿透實驗……………….……42
3.3.12.2 抗HIV藥物負載於奈米粒子且被polysorbate 80包覆之穿透驗…………………………………………..43
3.3.12.3 包覆抗HIV藥物之SLN穿透實驗…………………43
3.3.12.4 物質穿透生體外BBB模型之穿透率係數計算…...44
3.3.12.4.1 抗HIV藥物負載於奈米粒子且被polysorbate 80包覆之穿透率計算…………………………………45
3.3.12.4.2 包覆抗HIV藥物之SLN穿透率計算…………….46
3.3.12.5 奈米粒子被腦微血管內皮細胞吸收……………...46
3.3.13 奈米粒子對細胞毒性測試與細胞電阻測定………..47

第四章 結果與討論
4.1 奈米粒子粒徑分析及鑑定…………………………………...49
4.1.1 Zeta Sizer 3000…………………………………………49
4.1.2 FE-SEM………………………………………………...49
4.1.3 AFM…………………………………………………….50
4.2 人腦微血管內皮細胞的緊密接合(tight-junction, TJ)鑑定….50
4.3 奈米粒子對D4T、DLV和SQV之負載及包覆……………51
4.3.1 D4T、DLV和SQV對各種粒徑的PBCA之負載率…51
4.3.2 D4T、DLV和SQV對各種粒徑的MMA-SPM之負載率………………………………………………………..52
4.3.3各種粒徑的SLN對D4T、DLV和SQV之包覆率…53
4.3.4兩種成份中間相以不同比例合成SLN對D4T、DLV和SQV之包覆率與冷藏穩定實驗………………………54
4.3.5 藥物與奈米粒子之紅外線光譜實驗…………………54
4.4 生體外BBB穿透實驗……………………………………….56
4.4.1 D4T、DLV和SQV之穿透實驗……………………..56
4.4.2 D4T、DLV和SQV負載於各種粒徑之不同奈米粒子穿透實驗………………………………………………….57
4.4.2.1 D4T、DLV和SQV負載於各種粒徑PBCA奈米粒子穿透實驗…………………………………………….57
4.4.2.2 D4T、DLV和SQV負載於各種粒徑MMA-SPM奈米粒子穿透實驗………………………………………..59
4.4.2.3 包覆D4T、DLV和SQV的各種粒徑SLN穿透實驗..62
4.5 奈米粒子被腦微管內皮細胞吸收實驗……………………...64
4.6 負載率與穿透率關係………………………………………...65
4.7 奈米粒子對細胞毒性測試與細胞電阻測定………………...65

第五章 結論與建議
5.1 結論...........................................................................................69
5.2 建議...........................................................................................70
參考文獻…………………………………………………………..71
附錄………………………………………………………………139
1.Glynn, S. L., “In vitro blood-brain barrier premeabily of nevirapine compared to other HIV antiretroviral agents,” J. Pharm. Sci., 87, 306-310, 1998.
2.Pardidge, W. M., “Brain drug targeting: the future of brain drug development,” Cambridge University Press, New York, 50-51, 2001.
3.Kreuter, J., “Nanoparticle systems for brain delivery of drugs,” Adv. Drug Deliv. Rev., 47, 68-81, 2001.
4.Couvreur, P., Kante, B., Roland, M., Guiot, P., Bauduin, P., “Polycyanoacrylate nanoparticles as potential lysosomotropic carrier: preparation, morphological and sorptive properties,” J. Pharm. Pharmacol., 31, 331-332, 1982.
5.Stenekes, R. J. H., Loebis, A. E., Fernandes, C. M., Crommelin, D. J. A., Hennick, W. E., “Controlled release of liposomes from biodegradable dextran microspheres : A novel delivery concept,” Pharm. Res., 17, 690-695, 2000.
6.Kriwet, B., Tucker, C. J., Kalantar, T. H., Green, D. P., “Synthesis of bioadhensive poly (acrylic acid) nano- and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates,” J. Control. Rel., 56, 149-158, 1998.
7.Cavalli, R., Caputo, O., Gasco, M. R., “Preparation and characterization of solid lipid nanospheres containing paclitaxel,” Eur. J. Pharm. Sci., 10, 305-309, 2000.
8.Couvreur, P., Kante, B., Grislain, L., Roland, M., Spesiser, P., “Toxicity of polyalkylcyanoacrylate nanoparticles Π: Doxorubicin-loaded nanoparticles,” J. Pharm. Sci., 7, 790-792, 1982.
9.Tulkens, P., Trouet, A., “The uptake and intracellular accumulation of aminoglycoside antibiotics in lysosomes of cultured rabbit flbroblasts,” Biochem. Pharmacol., 27, 415-424, 1987.
10.Cohen, H., Levy, R. J., Gao, J., Fishbein, I., Kousaev, V., Sosnowski, S., Slomkoski S., Golomb, G., “The uptake and intracellular accumulation of aminoglycoside antibiotics in lysosomes of cultured rabbit flbroblasts,” Biochem. Pharmacol., 27, 415-424, 1987.
11.Calvo, P., Sanchez, A., Martinez, J., Lopez, M. I., Calonge, M., Pastor, J. C., Alonso, M. J., “Polyester nanocapsules as new topical oculaer delivery systems for cyclosporine A,” Pharm. Rel., 13, 311-315, 1996.
12.Damge, C., Michel, C., Aprahamian, M., Couvreur, P., Devissaguet, J. P., “Nanocapsules as carriers for oral peptide deliviery,” J. Pharm. Pharmacol., 31, 233-239, 1990.
13.Barrant, G. M., “Therapeutic applications of colloidal drug carriers,” Pharm. Sci., 3, 163-171, 2000.
14.Li, X., Chan, W. K., “Transport, metabolism and elimination mechanisms of anti-HIV agents,” Adv. Drug Deliv. Rev., 39, 81-103, 1999.
15.Lemberg, D. A., Palasanthiran, P., Goode, M., Ziegler, J. B., “Tolerabilities of antiretrovirals in paediatric HIV infection,” Drug Safety, 25, 973-991, 2002.
16.Birkinshaw, C., Sullivan, C., “Hydrolysis of poly (n-butylcyanoacrylate) nanoparticles using esterase,” Polym. Degradation Stab., 78, 7-15, 2002.
17.Schroeder, U., Sabel, B. A., Schroeder, H., “Diffusion enhancement of drugs by loaded nanoparticles in vitro,” Neuro-Psychopharmacol Biol. Psychiat., 23, 941-949, 1999.
18.Kreuter, J., Alyautdin, R. N., Kharkevich, D. A., Ivanov, A. A., “Passage of peptides through are blood-brain barrier with colloidal polymer particles (nanoparticles),” Brain Res., 674, 171-174, 1995.
19.Kreuter, J., Alyautdin, R. N., Kharkevich, D. A., Petrov, V. E., Langer, K., Berthold, A., “Delivery of lopermide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles,” Pharm. Res., 14, 325-328, 1997.
20.Kreuter, J., Alyautdin, R. N., Kharkevich, D. A., Tezikov E. B., Ramge, P., Begley, D. J., “Significant entry of tubocurarine into brain of rats by adsorption to polysorbate 80-coated polybutyl-cyanoacrylate nanoparticles: An in situ brain perfusion study,” J. Microencapsul., 15, 67-74, 1998.
21.Langer, K., Stieneker, F., Lambrecht, G., Mutschler, E., Kreuter, J., “Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delively Part Π: arecaidine propargly ester and pilocarpine loading and in vitro release,” Int. J. Pharm., 158, 211-217, 1997.
22.Zara, G. P., Cavalli, R., Fundaro, A., Bargoni, A., Caputo, O., Gasco, M. R., “Pharmacokinetics of doxorubicin incorporated in sold lipid nanospheres (SLN),” Pharm. Res., 40, 281-286, 1999.
23.Yang, S. C., Lu, L. F., Cai, Y., Zhu, J. B., Liang, B. W., Yang, C. Z., “Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect of brain,” J. Control. Rel., 59, 299-307, 1999.
24.Baranczyk-kuzma, A., Audus, K. L., Borcharolt, R. T., “Catecholamine metabolizing enzymes of bovine brain microvessel endothelial cell monolayers,” J. Neurochem., 46, 195-1960, 1986.
25.Abbott, N. J., Romero, L. A., “Transporting therapeutics across the blood-brain barrier,” Mol. Med. Today, 2, 106-113, 1996.
26. Terasaki, T., Ohtsuki, S., Hori, S., Takanaga, H., Nakashima, E., Hosoya, K. I., “New approaches to in vitro models of blood-brain barrier drug transport,” Drug Discovery Today, 20, 944-948, 2003.
27. Abbott, N. J., “Prediction of blood-brain barrier permeation in drug discovery from in vivo, in vitro and in silico models,” Drug Discovery Today, 4, 407-416, 2004.
28. Craig, L. E., Spelman, J. P., Strandberg, J. D., Zink, M. C., “Endothelial cells from diverse tissues exhibit differences in growth and morphology,” Microvasc. Res., 55, 65-76, 1998.
29.Abbott, N. J., “Physiology and pharmacology of the blood-brain barrier,” Springer-Verlag, New York, 1992.
30.Ghazanfari, F. A., Stewart, R. R., “Characteristics of endothelial cells derived from the blood-brain barrier and of astrocytes in culture,” Brain Res., 890, 49-65, 2001.
31.Mcallister, M. S., Macchia, F., Naftalin, R. J., Pedley, C. K., Mayberg, M. R., Marroni, M., Leaman, S., Stanness, K. A., Janigro, D., “Mechanisms of glucose transport at the blood-brain barrier: an in vitro study,” Brain Res., 409, 20-30, 2001.
32.Romero, I. A., Radewicz, K., Jubin, E., Michel, C. C., Greenwood, J., Couraud, P. O., Adamson, P., “Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells,” Neuroscience Letters, 344, 112-116, 2003.
33.Riddler, S. A., Anderson, R. E., Mellors, J. W., “Antiretroviral activity of stavudine,” Antiviral Res., 27, 189-203, 1995.
34.Strazielle, N., Francois, J., Egea, G., “Factors affecting delivery of antiviral drugs to the brain,” Rev. Med. Virol., 15, 105-133, 2005.
35.Tran, J. Q., Gerber, J. G., Kerr, B. M., “Delavirdine clinical pharmacokinetics and drug interactions,” J. Clin. Pharm., 40, 207-226, 2001.
36.“American hospital formulary service drug information,” Published by authority of the Board of Directors of the American Society of Hospital Pharmacists, Bethesda, Maryland, 698-706, 2003.
37.Kreuter, J., Alyautdin, R. N., Kharkevich, D.A., Gothier, D., Petrov, V., “Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly (butyl cyanoacrylate) nanoparticles,” Eur. J. Pharm. Biopharm., 41, 44-48, 1995.
38.Niemeggers, C. J. E., Lenaerts, F. M., Janssen, P. A., “Loperamide (R 18553), a novel type of antidiarrheal agent,” Arzneim.-Forsch., 24, 1633-1641, 1974.
39.Kreuter, J., Bradbury, M. W., Begley, D. J., “The blood-brain barrier and drug delivery to the CNS,” Marcel Dekker Inc., New York, 2000.
40. Kataoka, K., Harada, A., Nagasaki, Y., “Block copolymer micelles for drug delivery: design, characterization and biological significance,” Adv. Drug Deliv. Rev., 47, 113-131, 2001.
41.Hoffmann, F., Cinatl, Jr., Kabickova, H., Cinatl, J., Kreuter, J., Stieneker, F., “Preparation, characterization and cytoxicity of methylmethacrylate copolymer nanoparticles with a permanent positive surface charge,” Int. J. Pharm., 157, 189-198, 1997.
42. Langer, K., Marburger, C., Berthold, A., Kreuter, J., Stieneker, F., “Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery. Part Ι: preparation and physicochemical characterization,” Int. J. Pharm., 137, 67-74, 1996.
43.Kuo, Y. C., “Loading efficiency of stavudine on polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate copolymer nanoparticles,” Int. J. Pharm., 290, 161-172, 2005.
44.Kuo, C. Y., Chung, C. T., “Transport of zidovudine- and lamivudine-loaded polybutylcyanoacrylate and methylmethacrylate-sulfoproplylmethacrylate nanoparticles across the in vitro blood-brain barrier: characteristics of the drug-delivery system,” J. Chin. Inst. Chem. Engrs., 36, 1-12, 2005.
45.Bargoni, A., Cavalli, R., Caputo, O., Fundaro, A., Gasco, M. R., Zara, G. P., “Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats,” Pharm. Res., 15, 745-750, 1998.
46.Fundrao, A., Cavalli, R., Bargoni, A., Vighetto, D., Zara, G., Gasco, M. R., “Non-stealth and solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after I. V. administration to rats,” Pharm. Res., 42, 337-343, 2000.
47.Asperen, J. V., Mayer, U., Tellingen, O. V., Beijnen, J. H., “The functional role of P-glycoprotein in the blood-brain barrier,” J. Pharm. Sci., 86, 881-884, 1997.
48.Thorgeirsson, S. S., Silverman, J. A., Grant, T. W., Marino, P.A., “Multidrug resistance gene family and chemical carcinogens,” J
. Clin. Pharm. Ther., 49, 283-292, 1991.
49.Persidis, A., “Cancer multidrug resistance,” Nature Biotechnology, 18, 18-20, 2000.
50.Hsiang, Y. H., Hertzberg, R., Hecht, S., Liu, L. F., “Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I,” Biological Chemistry, 260, 14873-14878, 1985.
51.Leveque, D., Jehl, F., “P-glycoprotein and pharmacokinetics,” Anticancer Res., 15, 331-336, 1995.
52. Sukriti, N., “Blood-brain barrier: biology and research protocols,” Humana Press, New York, 145-160, 2003.
53. Hardebo, JE., Kahrstrom, J., “Endothelial negative surface charge areas and blood-brain barrier function,” Acta. Physiol. Scand., 125, 495-499, 1985.
54.Frey, A. H., Feld, R., Frey, B., “Neural function and behavior: defining the relationship,” Ann. N. Y. Acad. Sci., 247, 433-439, 1975.
55.Williams, W. M., Hoss, W., Formaniak, M., Michaelson, S. M.,
“Effect of 2450-MHz microwave energy on the blood-brain barrier to hydrophilic molecules: effect on the permeability to sodium fluorescein,” Brain Res Rev., 7, 165-170, 1984.
56.Oscar, K. J., Hawkins, T. D., “Microwave alteration of the blood-brain barrier system of rats,” Brain Res., 126, 281-293, 1977.
57.Williams, W. M., Lu, S. T., Cerro, M. D., Hoss, W., Michaelson, S. M., “Effect of 2450-MHz microwave energy on the blood-brain barrier: an overview and critique of past and present research,” Microwave Theory and Techniques, 8, 808-818, 1984.
58.Albert, E. N., Kerns, J. M., “Reversible microwave effects on the blood-brain barrier,” Brain Res., 230, 153-164, 1981.
59.Williams, W. M., Hoss, W., Formaniak, M., Michaelson, S. M.,
“Effect of 2450-MHz microwave energy on the blood-brain barrier to hydrophilic molecules: effect on the permeability to HRP (horseradish peroxidase),” Brain Res Rev., 7, 171-181, 1984.
60.Guo, G., Wang, Q., Wang, J., Li, J., Ren, D., Zhen, L., Lin, H., Guo, Y., “Effects of electromagnetic pulses on the blood-brain barrier of rats,” Asia-Pacific conference on environmental electromagnetics, 2003, Hangzhou ,China, 130-133.
61.Schirmacher, A., Winters, S., Fischer, S., Goeke, J., Galla, H. J., Kullnick, U., Ringelstein, E. B., Stogbauer, F., “Electromagnetic fields (1.8 GHz) increase the permeability to sucrose of the blood-brain barrier in vitro,” Bioelectromagnetics, 21, 338-345, 2000.
62.Andrea, J. A., Chou, C. K., Johnston, S. A., Adair, E. R., “Microwave effects on the nervous system,” Bioelectromagnetics Supplement, 6, 107-147, 2003.
63.Michalopoulis, G., Pitot, H. C., “Primary culture of parenchymal liver cells on collagen membrance,” Exp. Cell Res., 94, 70-78, 1975.
64.Davda, J., Labhasetwar, V., “Characterization of nanoparticle uptake by endothelial cells,” Int. J. Pharm., 233, 51-59, 2002.
65.Panyam, J., Sahoo, S. K., Prabha, S., Bargar, T., Labhasetwar, V., “Fluorescence and electron microscopy probes for cellular and tissue uptake of poly (D,L-lactide-co-glycolide) nanoparticles,” Int. J. Pharm., 262, 1-11, 2003
66.Berridge, M. V., Tan, A. S. “Characterization of the cellular reduction MTT: subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction,” Arch. Biochem. Biophys., 303, 474-482, 1993.
67.Gaillard, P. J., Boer, A. G., “Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug,” Eur. J. Pharm. Sci., 12, 95-102, 2000.
68.Gloor, S. M., Wachtel, M., Bolliger, M. F., Ishihara, H., Landmann, R., Frei, K., “Molecular and cellular permeability control at the blood-brain barrier,” Brain Res. Rev., 36, 258-264, 2001.
69.Douglas, S. J., Illum, L., Davis, S. S., “Particle size and size distribution of poly(butyl 2-cyanoacrylate) nanoparticles Π: influence of stabilizers,” J. Colloid Interface Sci., 103, 154-163, 1985.
70.Müller, R. H., Mäder, K., Gohla, S., “Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the rat,” Eur. J. Pharm. Biopharm., 50, 161-177, 2000.
71.Liend, R., Padilla, F. C., Quintana, A., “Characterization of cocoa butter extracted from Criollo cultivars of Theobroma cacao L.,” Food Res. Int., 30, 727-731, 1997.
72.Freitas, C., Müller, R. H., “Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase,” Eur. J. Pharm. Biopharm., 47, 125-132, 1999.
73.Sullivan, C. O., Birkinshaw, C., “In Vitro degradation of insulin-loaded poly (n-butylcyanoacrylate) nanoparticles,” Biomaterials, 25, 4375-4382, 2004.
74.Alyaudtin, R., Reichel, A., Löbenberg, R., Ramge, P., Kreuter, J., Begley, D., “Interaction of poly (butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro,” J. Drug Target, 9, 209-221, 2001.
75.Tröster, S. D., Kreuter, J., “Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles,” J. Microencapsul., 9, 19-28, 1992.
76. Tröster, S. D., Kreuter, J., Müller, U., “Modification of the body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants,” Int. J. Pharm., 61, 81-100, 1990.
77.Borchard, G., Audus, K. L., Shi, F., Kreuter, J., “Uptake of surfactant-coated poly(methyl methacrylate) nanoparticles by bovine brain microvessel endothelial cell monolayers,” Int. J. Pharm., 110, 29-35, 1994.
78.Sun, W., Xie, C., Wang, H., Hu, Y., “Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain,” Biomaterials, 25, 3065-3071, 2004.
79.Kreuter, J., Shamenkov, D., Petrov, V., Ramge, P., Cychutek, K., Claudia, K. B., Alyautdin, R., “Apoliporotein-mediated transport of nanoparticles-bound drugs across the blood-brain barrier,” J. Drug Target, 10, 371-325, 2002.
80.Dehouck, B., Fenart, L., Dehouck, M. P., Pierce, A., Torpier, G., Cecchelli, R., “A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier,” J. Cell Biol., 138, 877-889, 1997.
81.Bruce, A., Alexander, J., Julian, L., Martin, R., Keith, R., Peter, W., “Molecular biology of the cell,” Garland Science, New York, 749-753, 2002.
82.Wissing, S. A., Müller, R. H., “Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration,” J. Control. Rel. , 81, 225-233, 2002.
83.Fenart, L., Casanova, A., Dehouck, B., Duhem, C., Slupek, S., Cecchelli, R., Betebeder, D., “Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier,” Parmacol. Exp. Ther., 291, 1017-1022, 1999.
84.Weyermann, J., Lochmann, D., Georgens, C., Rais, I., Kreuter, J., Karas, M., Wolkenhauer, M., Zimmer, A., “Physicochemical characterization of cationic polybutylcyanoacrylat-nanoparticles by fluorescence correlation spectroscopy,” Eur. J. Pharm. Sci., 58, 25-35, 2004.
85.Vauthier, C., Dubernet, C., Fattal, E., Patrick, C., “Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications,” Adv. Drug Deliv. Rev., 55, 519-548, 2003.
86.Müller, R. H., Lherm, C., Herbot, J., Blunk, T., Couvreur, P., “In vitro model for the degradation of alkylcyanoacrylate nanoparticles,” Biomaterials, 11, 590-595, 1990.
87.Lenaerts, V., Couvreur, P., Christiaens-Leyh, D., Joiris, E., Roland, M., “Degradation of poly(isobutyl cyanoacrylate) nanoparticles,” Biomaterials, 5 ,65-68, 1980.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文