跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 00:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施呈杰
研究生(外文):Cheng-Chieh Shih
論文名稱:Pt/C觸媒結構研究-觸媒製備、老化及再生
論文名稱(外文):Structural Investigation of Pt/C Catalysts : Preparation, Deactivation, and Regeneration
指導教授:張仁瑞
指導教授(外文):Jen -Ray Chang
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:150
中文關鍵詞:老化活性碳支撐Pt觸媒Pt再分散催化溼式氧化法
外文關鍵詞:Pt redispersiondeactivationactivated carbon supported platinum catalystscatalytic wet air oxidation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:905
  • 評分評分:
  • 下載下載:137
  • 收藏至我的研究室書目清單書目收藏:0
本研究係探討Pt/C觸媒製備、老化及再生過程,活性碳擔體上Pt表面物質的結構特性。以Pt(NH3)4(NO3)2作為製備Pt/C觸媒的先驅物,使用FT-IR及TPR,分析活性碳含氧官能基及Pt(NH3)4(NO3)2的變化,結果顯示在140℃,Pt金屬顆粒就已開始生成,而含氧官能基則在450℃才開始分解。以X射線吸收光譜分析活性碳表面生成的物質,EXAFS分析結果顯示樣品在200℃還原,所生成之Pt顆粒大小為1.1nm,Pt-Pt配位數平均值為5.5,Pt-Pt鍵長平均值為0.276 nm,而還原溫度升至450℃,Pt-Pt鍵長並無明顯變化,但Pt顆粒成長至1.5nm,Pt-Pt配位數平均值增至6.7。於300℃通入空氣,觸媒表面隨著Pt(NH3)4(NO3)2分解形成PtOx,緊接著在450℃還原,所生成的Pt顆粒大小為0.7nm,Pt-Pt配位數平均值為3.7;若於450℃至600℃通氮氣後,緊接著在450℃還原,則Pt顆粒大小約由1.0nm成長至2.3nm,顯示高溫下通氮氣處理,Pt顆粒會伴隨著Pt(NH3)4(NO3)2分解及水份去除而聚集,導致Pt分散度降低,而TEM及CO化學吸附分析結果,進一步確認溫度對Pt顆粒大小的影響,因此還原前以空氣煅燒或高溫下通氮氣對Pt/C結構會造成相當明顯的影響。根據FT-IR及XAS的結果推斷Pt顆粒與含氧官能基鍵結的電子密度會比與碳鍵結稍低,然而,Pt顆粒愈小,會有愈多的Pt原子與含氧官能基接觸,因此觸媒處理條件除影響Pt顆粒大小,金屬-擔體界面的特性也會跟著受到影響。
已知WAO為處理含有機物廢水相當有效的方法,而Pt/C觸媒應用於WAO效果相當不錯,但穩定性差。把Pt定錨在經TiO2嫁接的活性碳上(Pt/ TiO2-C),進行WAO反應測試,結果顯示Pt/ TiO2-C觸媒具有很好的活性及穩定性。利用TEM、EXAFS及FT-IR分析新鮮及老化的Pt/C觸媒,並藉以推測觸媒活性衰退的機構,結果顯示在220℃,以甲醇水溶液為進料,進行WAO反應200小時後,Pt金屬欉大小由2.0增至10nm,因此推斷Pt金屬欉遷移聚集是造成觸媒活性衰退的原因。以FT-IR分析老化觸媒,發現含氧官能基及碳酸衍生物增加,顯示碳的表面發生氧化,降低Pt與擔體的親和性,導致Pt聚集。TiO2嫁接到活性碳上,可緊緊地固定Pt避免發生聚集,經長期性能測試,証實TiO2嫁接可有效提升Pt/C觸媒穩定性,利用EXAFS分析Pt- TiO2交互作用及Pt金屬欉形態,進一步証明Pt被TiO2固定,而能維持住小顆粒狀態。
以CO化學吸附方法探討再生條件對Pt/C觸媒上Pt分散度的影響,結果顯示在溫度=300℃,處理時間=2hr,以氧氯化法再生可得到最佳Pt分散度。再生過程在活性碳擔體表面生成之Pt錯合物經EXAFS及TPR分析,結果顯示為Pt氯化物,因此推測活性碳擔體Pt觸媒再分散的機構為Pt先氯化,生成揮發性的PtCl2,再藉由氣相或表面輸送分散,最後在擔體表面與擔體進行交互作用形成[Pt(VI) Clx]s,而被擔體牢牢抓住。
We report in this work a study on the structural properties of Pt surface species on activated-carbon support of Pt/C catalyst during preparation, deactivation and regeneration processes. Pt(NH3)4(NO3)2 was used as a precursor to prepare Pt subnano-particles on activated-carbon (Pt/C). The conversion of Pt(NH3)4(NO3)2 to Pt clusters and the decomposition of oxygen-containing functional groups of the activated-carbon were examined by use of temperature-programmed reduction (TPR) and Fourier transform infrared (FT-IR) spectroscopy . The results showed that the formation of Pt particles and the decomposition of the functional groups started at 140 °C and 450 °C, respectively. The species formed on carbon surface were characterized by X-ray absorption spectroscopy (XAS). Extended X-ray absorption fine structure (EXAFS) spectroscopy results indicated that the sample reduced at 200 °C in hydrogen had an average Pt particle size of about 1.1 nm (average Pt-Pt coordination number of 5.5) and average Pt-Pt bond distance of 0.276 nm. As reduction temperature was increased to 450 °C, there was no significant change in the average bond distance of Pt-Pt whereas the Pt particles grew to about 1.5 nm (with an average Pt-Pt coordination number of 6.7). Treatments before hydrogen reduction, air calcination and nitrogen treatment influenced the structure of Pt/C significantly. In flowing air at 300 °C, PtOx were formed on the surface concomitantly with the oxidative decomposition of Pt(NH3)4(NO3)2. Subsequent hydrogen reduction of the PtOx at 450 °C formed Pt particles of about 0.7 nm (average Pt-Pt coordination number of 3.7). In contrast, in the flowing nitrogen at elevated temperatures, Pt surface species aggregated concomitantly with the removal of water and the decomposition of Pt(NH3)4(NO3)2. This aggregation decreased Pt dispersion. The Pt particle sizes after 450°C hydrogen reduction increased from approximately 1.0 nm to about 2.3 nm as the nitrogen treatment temperatures were elevated from 450 °C to 600 °C. The effect of treatment temperature on particle size was further confirmed by TEM and CO chemisorption. The nature of metal-support interface varies with Pt particle size, which is, in turn, influenced by the treatment conditions. Pt/C of smaller Pt particle size has more Pt atoms in contact with oxygen-containing functional groups. Moreover, based on FT-IR and XAS results, we infer that Pt particles bonded to oxygen-containing functional group have a slightly lower electron density than those on carbon.
Wet air oxidation (WAO) process is effective in converting organic pollutants in wastewater to innocuous carbon dioxide. Supported Pt catalysts, particularly Pt/C are effective but unstable. Now a novel catalyst, Pt on TiO2 grafted carbon (Pt/TiO2-C) has been developed for WAO. The catalyst is characterized by high activity and stability in WAO process. By use of transmission electron microscopy (TEM), extended X-ray absorption fine structure (EXAFS) and Fourier transform infrared (FT-IR) spectroscopy, the fresh and aged Pt/C catalysts were characterized and the mechanism of catalyst deactivation was elucidated. The average Pt cluster size increased from about 2.0 to 10 nm after WAO of methanol in water at 220 °C for 200 hrs. These results indicated that Pt/C catalyst was deactivated due to migration and aggregation of the Pt clusters into large Pt particles. The increase in the contents of oxygen-containing groups and carbonate species as characterized by FT-IR spectra in the aged catalyst further suggested that the oxidation on carbon surface decreases the affinity between Pt and carbon support, leading to extensive Pt aggregation. Thus, TiO2 was grafted on to the carbon support to anchor and keep Pt from migration and agglomeration, and obtain a stable Pt/TiO2-C catalyst. The efficacy of TiO2 grafted on activated carbon in stabilizing the Pt/C catalyst was demonstrated in the long-term catalytic performance tests. The evidences of the TiO2 in anchoring and maintaining the Pt clusters in small ensembles were further demonstrated by characterizing the Pt-TiO2 interactions and the morphology of Pt clusters using EXAFS.
The metal dispersion for regeneration of Pt on activated carbon has been studied as a function of regeneration conditions. The changes in metal dispersion were followed by CO chemisorption measurements. After treatment for 2 hr, optimum conditions for good dispersion were achieved with oxychlorination at 300℃ and involved mobile platinum complexs in the dispersion process. The surface species responsible for redispersion were identified by EXAFS and TPR. The results showed that redispersion of platinum was associated with the formation of a [Pt(IV)Clx] surface complex. This apparently occurs through a surface transport path, while redispersion in mobile platinum chlorides can occur only by vaper transport.
第一章 緒論 1
1.1 支撐式金屬觸媒(Supported Metal Catalysts) 1
1.2 支撐式Pt觸媒(Supported Platinum Catalyst) 2
1.3 觸媒擔體(Support) 4
1.4 濕式氧化法(Wet Air Oxidation) 5
1.5 研究動機及目的 7
第二章 觸媒製備、反應裝置與分析方法 14
2.1 觸媒製備 14
2.2 反應裝置 14
2.3 化學藥品及產物分析 15
2.3.1 藥品 15
2.3.2 產物分析 16
2.4 觸媒特性分析 16
2.4.1 程溫還原(Temperature Programmed Reduction) 16
2.4.2 CO化學吸附(CO Chemisorption) 17
2.4.3 快速傅立葉轉換-紅外線光譜分析(FFT-IR) 18
2.4.4 延伸X光吸收細微結構光譜分析(Analysis of Extended X-Ray Fine Structure, EXAFS) 19
2.4.4.a 同步輻射技術 19
2.4.4.b 同步輻射實驗 20
2.4.4c 數據處理 21
2.4.5 穿透式電子顯微鏡(TEM) 22
2.4.6 其它分析儀器 22
第三章 製備條件對活性碳上鉑次奈米顆粒之形成及成長的影響 30
3.1 引言 30
3.2 實驗 32
3.2.1 觸媒製備 32
3.2.2 程溫還原實驗 33
3.2.3 CO化學吸附 33
3.2.4 傅立葉轉換紅外線光譜分析(FTIR) 34
3.2.5 X射線吸收光譜分析 34
3.2.6 穿透式電子顯微鏡(TEM) 35
3.3 結果與討論 35
3.3.1 程溫還原及FTIR光譜 35
3.3.2 CO化學吸附 36
3.3.3 EXAFS數據分析 37
3.3.4 活性碳上Pt金屬欉的生成 38
3.3.5 還原溫度對Pt/C結購的影響 39
3.3.6 氮氣及空氣前處理對Pt/C結購的影響 41
3.3.7 以EXAFS、TEM及CO化學吸附估算Pt顆粒大小 42
3.4 結論 44
第四章 探討TiO2嫁接對催化溼式氧化觸媒Pt/C穩定性的影響 63
4.1 引言 63
4.2 實驗 66
4.2.1 觸媒製備 66
4.2.2 催化性能測試 67
4.2.3 FTIR吸收光譜術 68
4.2.4 X-光吸收光譜術 69
4.2.5 穿透式電子顯微鏡(TEM) 70
4.2.6 CO化學吸附 70
4.3 結果與討論 71
4.3.1 Pt/C及Pt/ TiO2-C觸媒之甲醇溼式氧化催化性能 71
4.3.2 反應前後Pt/C的結構特性 75
4.3.3 Pt成長的機構 77
4.3.4 Pt/C觸媒活性衰退的機構 79
4.3.5 Pt/ TiO2-C觸媒的結構特性 81
4.3.6 以EXAFS分析反應前後Pt/C及Pt/ TiO2-C的結構變化 84
4.3.7 穩定機構-Pt固定 85
4.3.8 其他可能機構 86
4.4 結論 87
第五章 Pt/C觸媒再生時Pt結構及Pt再分散機構探討 109
5.1 引言 109
5.2 實驗 111
5.2.1 觸媒製備 111
5.2.2 老化測試 111
5.2.3 觸媒再生 112
5.2.4 程溫還原實驗 113
5.2.5 CO化學吸附 114
5.2.6 X-光吸收光譜術 114
5.3結果與討論 115
5.3.1 Pt再分散 115
5.3.2 Pt結構特性 118
5.3.3 Pt再分散機構 120
5.4 結論 122
第六章 總結與未來展望 132
6.1 結論 132
6.2 未來研究 133
文獻 135
(a) 中文文獻 135
(a-1) 期刊 135
(a-2) 書籍 135
(b) 英文文獻 135
(b-1) Journals 135
(b-2) Books 147
作者自述 149
本論文之相關著作 150
(a) 中文文獻
(a-1) 期刊
周明顯,「污染防治技術開發與推廣專案研究揮發性有機空氣污染物處理效果暨成本研究」,行政院環保署,EPA-86-FA11-09-94,民國八十六年。
江宏毅,「Pt/TiO2-C在濕式氧化之催化行為」,中正大學化工系碩士論文,民國九十四年六月。
(a-2) 書籍
李志甫,「SRRC BL17C 光束線暨X光吸收光譜實驗站操作說明書」,行政院同步輻射研究中心,民國九十一年。

(b) 英文文獻
(b-1) Journals
Afonso, J. C., D. A. G. Aranda, M. Schmal, and R. Frety, 1997, “Regeneration of a Pt-Sn/ Al2O3 Catalyst:Influence of Heating Rate, Temperature and Time of Regeneration”, Fuel Process. Technol., 50, 35-48.
Arteaga, G. J., J. A. Anderson, and C. H. Rochester, 2000, “Effects of Oxidation-Reduction and Oxychlorination-Reduction Cycles on Pt-Ge/Al2O3 Catalysts ”, J. Catal., 189, 195-208.
Asakura, K., H. Nagahiro, N. Ichikuni, and Y. Iwasawa, 1999, “Structure and Catalytic Combustion Activity of Atomically Dispersed Pt Species at MgO Surface ”, Appl. Catal. A: General, 188, 313-324.
Auer, E., A. Freund, J. Pietsch, and T. Tacke, 1998, “Carbons as Supports for Industrial Precious Metal Catalysts ”, Appl. Catal. A: General, 173, 259-271.
Baldi, G., S. Goto, C. -K. Chow, and J. M. Smith, 1974, “Catalytic Oxidation of Formic Acid in Water. Intraparticle Diffusion in Liquid-Filled Pores”, Ind. Eng. Chem., Process Des. Develop., 13, No.4, 447-452.
Bartholomew, C . H., 2001, “ Mechanisms of catalyst deactivation”, Appl. Catal. A : General, 212, 17-60.
Bazin, D., D. Sayers, and J. Rehr, 1997, “Comparison between X-Ray-Absorption Spectroscopy, Anomalous Wide-Angle X-Ray Scattering, Anomalous Small-Angle X-Ray Scattering, and Diffraction Anomalous Fine Structure Techniques Applied to Nanometer-Scale Metallic Clusters”, J. Phys. Chem. B, 101, No. 51, 11040-11050.
Chang, J.-R., J.-F. Lee, S. D. Lin, and A. S. Lin, 1995, “Carbon-supported Platinum Catalyst Electrodes: Characterization by Transmission Electron Microscopy, X-ray Absorption Spectroscopy, and Electrochemical Half-Cell Measurement on a Phosphoric Acid Fuel Cell”,J. Phys. Chem. 99, 14798-14804.
Cheng, S. and K. T. Chuang, 1992, “Simultaneous Methanol Removal and Destruction from Wastewater in a Trickle-Bed Reactor”, Can. J. Chem. Eng. 70, 727-733.
Coe, R. H., and H. E. Randaltt, 1966 , “Platinum Group Hydroforming Catalyst Reactivation Process” , U. S. Patent, 3,278,419.
Dadyburjor, D. B., 1979, “Splitting of Supported Metal Catalysts”, J. Catal. 57, 504-508.
de Resende, N. S., J.-G. Eon, and M. Schmal, 1999 “Pt–TiO2–γ Al2O3Catalyst: I. Dispersion of Platinum on Alumina-Grafted Titanium Oxide ”, J. Catal. 183, 6-13.
Fiedorow, R. M. J., and S. E. Wanke, 1976, “The Sintering of Supported Metal Catalysts I. Redispersion of Supported Platinum in Oxygen”, J. Catal. 43, 34-42.
Flynn, P. C., and S. E. Wanke, 1975, “Experimental Studies of Sintering of Supported Platinum Catalysts”, J. Catal., 37, 432-448.
Foger, K., and H. Jaeger, 1985, “The Effect of Chlorine Treatment on the Dispersion of Platinum Metal Particles Supported on Silica and γ-Alumina”, J. Catal. 92,64-78.
Fortuny, A., C. Miro, J. Font, and A. Fabregat, 1998, “Three-Phase Reactors for Environmental Remediation: Catalytic Wet Oxidation of Phenol Using Active Carbon ”, Catal. Today 48, 323-328.
Fortuny, A., J. Font, and A. Fabregat, 1998 “Wet Air Oxidation of Phenol Using Active Carbon as Catalyst ”, Appl. Catal. B: Environmental, 19, 165-173.
Fuente, A. M., G. Pulgar, F. Gonźalez, C. Pesquera, and C. Blanco, 2001, “Activated Carbon Supported Pt Catalysts: Effect of Support Texture and Metal Precursor on Activity of Acetone Hydrogenation ”,Appl. Catal. A: General 208, 35-46.
Gallezot, P., S. Chaumet, A. Perrard, and P. Isnard, 1997, “Catalytic Wet Air Oxidation of Acetic Acid on Carbon-Supported Ruthenium Catalysts ”, J. Catal. 168, 104-109.
Gollob, R., and D. B. Dadyburjor, 1981 , “Regeneration of Model Supported Metal Catalysts”, J. Catal. 68,473-486.
Gomes, H. T., J. L. Figueiredo, and J. L. Faria, 2000, “Catalytic Wet Air Oxidation of Low Molecular Weight Carboxylic Acids Using a Carbon Supported Platinum Catalyst ”, Appl. Catal. B: Environmental, 27, L217- L223.
Gómez-Serrano, V., F. Piriz-Almeida, C. J. Durán-Valle, and J. Pastor-Villegas, 1999, “Formation of Oxygen Structures by Air Activation. A Study by FT-IR Spectroscopy ”, Carbon 37, 1517-1528.
Guerrero-Ruiz, A., A. Sepulveda-Escribano, and I. Rodriguez-Ramos, 1994, “Carbon Monoxide Hydrogenation over Carbon Supported Cobalt or Ruthenium Catalysts. Promoting effects of Magnesium, Vanadium and Cerium Oxides ”, Appl. Catal. A: General 120, 71-83.
Hogin, D. R., Granford, R. C. Morbeck, Fanwood, and H. R. Sanders, 1959, “Hydroforming of a Naphtha with a Platinum-Alumina-Halogen Catalyst and the Regeneration of the Catalyst with an Oxygen- and Halogen-Containing Gas”, U. S. Patent, 2,916,440.
Hsieh, C.-C., J.-F.Lee, Y.-R.Liu, and J.-R.Chang, 2002, “Structural Investigation of Catalyst Deactivation of Pt/SDB for Catalytic Oxidation of VOC-Containing Wastewater ”,Waste Manage., 22, 739-745.
Imamura, S., 1999, “Catalytic and Noncatalytic Wet Oxidation”, Ind. Eng. Chem. Res. 38, 1743-1753.
Ivanovich, E., G. Antov, and B. Kazakova, 1981, “Liver Changes under Combined Effect of Working Environmental Factors”, Int. Archi. Occu. & Environ. Health, 48, 41-47.
Johson, M. F. L., and C. D. Keith, 1963 , “The State of Platinum in Reforming Catalysts”, J. Phys. Chem. 67, 200-201.
Kearby, K. K., Granford, J. P. Thorn, Elizabeth and J. A. Hinlicky, 1964 , “Reactivation of Regenerated Noble Metal Catalysts with Gaseous Halogens”, U. S. Patent, 3,134,732.
Koningsberger, D. C., and B. C. Gates, 1992, “Nature of the Metal-Support Interface in Supported Metal Catalysts: Results from X-ray Absorption Spectroscopy”, Catal. Lett. 14, 271-277.
Lee, J.-F., 1995, “Application of X-ray Absorption Spectroscopy to Catalyst Characterization”, Chemistry, 53, No.3, 280-293.
Lee, J.-F., F.-S.Zheng, and J.-R.Chang, 2001, “Structural Investigation of Solid-Acid-Promoted Pd/SDB Catalysts for Ethyl Acetate Production from Ethanol”, J. Phys. Chem. B, 105, 3400-3404.
Lee, P. A., and G. Beni, 1977, “New Method for the Calculation of Atomic Phase Shifts: Application to Extended X-ray Absorption Fine structure (EXAFS) in Molecules and Crystals”, Phys. Rev. B 15, 2862-2883.
Lee, T. J., and Y. G. Kim, 1984 , “Redispersion of Supported Platinum Catalysts”, J. Catal. 90,279-291 .
Le Normand, F., A. Borgna, T. F. Garetto, C. R. Apesteguía, and B. Moraweck, 1996 , “Redispersion of Sintered Pt/Al2O3 Naphtha Reforming Catalysts:An in Situ Study Monitored by X-ray Absorption Spectroscopy”, J. Phys. Chem. 100, 9068-9076.
Levec, J., and A. Pintar, 1995 , “Catalytic Oxidation of Aqueous Solutions of Organics. An Effective Method for Removal of Toxic Pollutants from Waste Waters ”, Catal. Today, 24, 51-58.
Lieske, H., G. Lietz., H. Spindler, , and J. Völter, 1983, “Reaction of Platinum in Oxygen- and Hydrogen-Treated Pt/γ-Al2O3Catalysts I. Temperature-Programmed Reduction, Adsorption, and Redispersion of Platinum”, J. Catal. 81,8-16.
Lietz., G., H. Lieske, H. Spindler, W. Hamke, and J. Völter, 1983, “Reaction of Platinum in Oxygen- and Hydrogen-Treated Pt/γ-Al2O3 Catalysts II. Ultraviolet-Visible Studies, Sintering of Platinum, and Soluble Platinum”, J. Catal. 81,17-25.
Lin, H.-M., S.-T. Kao, K.-M. Lin, J.-R. Chang, and S.-G. Shyu, 2004, “Grafting TiO2 on MCM-41 as a TiO2 Support for Vanadia for Catalytic Oxidation of Ethanol—EXAFS and XANES Analyses of Vanadium ”,J. Catal. 224, 156-163.
Lin,T.-B., D.-L.Chung, and J.-R.Chang, 1999, “Ethyl Acetate Production from Water-Containing Ethanol Catalyzed by Supported Pd Catalysts: Advantages and Disadvanges of hydrophobic Supports”, Ind. Eng. Chem. Res., 38, 1271-1276.
Liu, T.-C. and S.-J. Chiu, 1994, “Promoting Effect of Tin on Ni/C Catalyst for Methanol Carbonylation”, Ind. Eng. Chem. Res., 33, 488-492.
Liu, Z., and R. J. Davis, 1994, “Investigation of the Structure of Microporous Ti-Si Mixed Oxides by X-ray, UV Reflectance, FT-Raman, and FT-IR Spectroscopies”, J. Phys. Chem. 98, 1253-1261.
Luck, F., 1996 , “A Review of Industrial Catalytic Wet Air Oxidation Processes ”, Catal. Today, 27, 195-202.
Luck, F., 1999, “Wet Air Oxidation: Past, Present and Future ”, Catal. Today, 53, 81-91.
Lytle, F. W., R. B. Greegor, E. C. Marques, D. R. Sandstrom, G. H. Via and J. H. Sinfelt, 1985, “Structural genesis of Pt on SiO2: Determination by X-ray absorption spectroscopy”, J. Catal., 95, 546-557.
Macleod, N., R. Cropley, J. M. Keel, and R. M. Lambert, 2004 “Exploiting the Synergy of Titania and Alumina in Lean NOx Reduction: in situ Ammonia Generation during The Pd/TiO2/Al2O3–Catalysed H2/CO/NO/O2 Reaction ”, J. Catal. 221, 20-31.
Maruyama, J. and I. Abe, 2003, “Application of Conventional Activated Carbon Loaded with Dispersed Pt to PEFC Catalyst Layer ”, Electrochimica, 48, 1443-1450.
Matatov-Meytal, Y., and M. Sheintuch, 2000, “Catalytic Regeneration of Chloroorganics-Saturated Activated Carbon Using Hydrodechlorination”, Ind. Eng. Chem. Res., 39, 18-23.
Mishra, V. S., V. V. Mahajani, and J. B. Joshi, 1995 , “Wet Air Oxidation”, Ind. Eng. Chem. Res., 34, 2-48.
Mojet, B. L., J. T. Miller, D. E. Ramaker, and D. C. Koningsberger, 1999, “A New Model Describing the Metal–Support Interaction in Noble Metal Catalysts ”, J. Catal. 186, 373-386.
Monźon, A., T. F. Garetto, and A. Borgna, 2003, “Sintering and Redispersion of Pt/γ-Al2O3 Catalysts: a Kinetic Model” Appl. Catal. A : General, 248,279-289.
Mordente, M. G. V., and C. H. Rochester, 1989 , “Infrared Study of the Effects of Oxychlorination on Pt Dispersion in Pt/Al2O3 Catalysts” J. Chem. Soc., Faraday Trans. 1, 85(10), 3495-3504.
Neri, G., A. Donato, C. Milone, R. Pietropaolo, and J. Schwank, 1996, “Characterization of Carbon Supported Catalysts by Electron Microscopy Techniques ”, Mater. Chem. Phys., 44 , 145-150.
Nikov, I., and K. Paev, 1995, “Palladium on Alumina Catalyst for Glucose Oxidation: Reaction Kinetics and Catalyst Deactivation ”, Catal. Today 24, 41-47.
Noronha, F. B., C. A. Perez, M. Schmal, and R. Fréty, 1999, “Determination of Cobalt Species in Niobia Supported Catalysts”, Phys. Chem. Chem. Phys. 1, 2861-2867.
Pieck, C. L., E. L. Jablonski, and J. M. Parera, 1990 , “Sintering-Redispersion of Pt-Re/ Al2O3 during Regeneration”, Appl. Catal. 62,47-60.
Purnell, S. K., K. M. Sanchez, R. Patrini, J.-R. Chang, and B. C. Gates, 1994, “Genesis and Growth of Pt Particles on MgO: Characterization by X-ray Absorption Spectroscopy and Infrared Spectroscopy”,J. Phys. Chem. 98, 1205-1212.
Ruckenstein, E., and Y. F. Chu, 1979, “Redispersion of Platinum Crystallites Supported on Alumina – Role of Wetting”, J. Catal. 59, 109-122.
Sabio, E., E. González, J.F. González, C.M. González-García, A. Ramiro, and J. Gañan, 2004, “Thermal Regeneration of Activated Carbon Saturated with p-Nitrophenol ”, Carbon, 42, 2285-2293.
Satterfield, C. N., 1975, “Trickled Bed Reactors (Review)”, AIChE J., 21, No. 2, 209-228.
Sepúlveda-Escribano, A., F. Coloma, and F. Rodríguez-Reinoso, 1998, “Platinum Catalysts Supported on Carbon Blacks with Different Surface Chemical Properties ”, Appl. Catal. A: General, 173, 247-257.
Shih, C.-C. and J.-R. Chang, 2005, “Genesis and Growth of Platinum Subnano-Particles on Activated-Carbon Characterized by X-ray Absorption Spectroscopy: Effects of Preparation Conditions”, Mater. Chem. Phys., 92, 89-97.
Spivey, J. J., 1987, “Complete Catalytic Oxidation of Volatile Organics”, Ind. Eng. Chem. Res. 26, 2165-2180.
Srinivasan, S., A. K. Datye, M. H. Smith, and C. H. F. Peden, 1994, “Interaction of Titanium Isopropoxide with Surface Hydroxyls on Silica ”, J. Catal. 145, 565-573.
Straguzzi, G. I., H. R. Aduriz, , and C. E. Gigola, 1980 , “Redispersion of Platinum on Alumina Support”, J. Catal. 66, 171-183.
Stulga, J. E., P. Wynblatt, and J. K. Tien, 1980 , “Particles Splitting and Redispersion Phenomena in Model Alumina-Supported Platinum Catalysts ”, J. Catal. 62, 59-69.
Tauster, S. J. and S. C. Fung, 1978, “Strong Metal-Support Interactions: Occurrence among the Binary Oxides of Groups IIA–VB ”, J. Catal. 55, 29-35.
Trawczyński, J., 2003, “Noble Metals Supported on Carbon Black Composites as Catalysts for the Wet-Air Oxidation of Phenol ”, Carbon 41 , 1515-1523.
Tryba, B., A. W. Morawski, and M. Inagaki, 2003, “Application of TiO2-Mounted Activated Carbon to the Removal of Phenol from Water ”, Appl. Catal. B: Environmental 41, 427-433.
Völter, J., G. Lietz, H. Spindler, and H. Lieske, 1987, “Role of Metallic and Oxidic Platinum in the Catalytic Combustion of n-Heptane ”, J. Catal. 104, 375-380.
Yamashita, H., and M. Anpo, 2003, Current opinion in Solid State and Material Science, 7, 471.
Yan, T. Y., 1994 , “Wastewater Treatment by Catalytic Oxidation”, US Patent 5,338,463.
Yang, H., C.-P. Liu, T.-H. Lu, and Y.-W. Tang, 2001, “Fuel Cell Anode Catalyst Production”, Chinese Patent CN 1,280,398.
Zhang, Y. J., A. Maroto-Valiente, I. Rodriguez-Ramos, Q. Xin, and A. Guerrero-Ruiz, 2004, “Synthesis and Characterization of Carbon Black Supported Pt–Ru Alloy as a Model Catalyst for Fuel Cells ”,Catal. Today, 93, 619-626.
Zhou, W., Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras, and Q. Xin, 2003, “Pt Based Anode Catalysts for Direct Ethanol Fuel Cells ”, Appl. Catal. B: Environmental 46, 273-285.

(b-2) Books
Antos, G. J., A. M. Aitani, and J. M. Parera, 1995, “Catalytic Naphtha Reforming”, Eds. Dekker, New York.
Aris, R., in: G. F. Froment and K. B. Bischoff(Authors), 1990, “Chemical Reactor Analysis and Design”, John Wiely & Sons, New York.
Asakura, K., in: Y. Iwasawa(Eds.), 1995, p.33,“X-ray Absorption Fine Structure for Catalysts and Surface”, World Scientific.
Baker, R. T. K., 1991, p. 84, “in Stability of Supported Catalysts: Sintering and Redispersion”, Catalytica Studies Division, California.
Bansal, R. C., J.-B. Donnet, and F. Stoeckli, 1988, “Active Carbon”, Marcel Dekker, New York and Basel.
Gates, B. C., J. R. Katzer, and G. C. A. Schuit, 1979, “Chemistry of Catalytic Processes”, McGraw-Hill, New York.
Imelik, B., C. Naccache, G. Coudurier, H. Praliaud, P. Meriaudeau, P. Gallezot, G. A. Martin and J. C. Vedrine, 1982, “Metal-Support and Metal-Additive Effects in Catalysis”, Elsevier, New York.
Inorganic Crystal Structure Database (ICSD for WWW).
Jones, A., and B. McNicol, 1986, “Temperature-Programmed Reduction for Solid Materials Characterization”, Marcel Dekker , New York.
Koningsberger, D. C., and R. Prins, 1988, “X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES”, Wiley, New York.
Little, D. M., 1985, “Catalytic Reforming”, Pennwell, Oklahoma.
Little, L. H., A. V. Kiselev, and V. I. Lygin, 1966, p. 77-84, “Infrared Spectra of Adsorbed Species”, Academic Press, New York.
Nakanishi, K., 1962, p.30, “Infrared Absorption Spectroscopy-Practical”, San Francisco CA.
Poncelet, G., P. A. Jacobs, P. Grange and B. Delmon, 1991, “Preparation of Catalysts V”, Elsevier, New York.
Thomas, J. M., and W. T. Thomas, 1997, “Principle and Practice of Heterogeneous Catalysts”, VCH ,New York.
Van Zon, J. B. A. D., 1988, Ph. D. Dissertation, Eindhoven University of Technology, The Netherlands.
Varrkamp, M., 1996, “XDAP User’s Guide”, XAFS Services International, The Netherlands.
Wyckoff, R. W. G. , 1963, “Crystal Structure”, Wiley, New York.
Yermakov, Y. I., B. N. Kuznetsov and V. A. Zakharov, 1981, “Catalysis by Supported Complexes”, Elsevier, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top