跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 19:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊雅均
研究生(外文):Ya-Chun Yang
論文名稱:利用電弧放電法製備碳化物奈米材料
論文名稱(外文):Synthesis of Carbide Nanomaterials Using Arc-Discharge Technology
指導教授:李元堯李元堯引用關係
指導教授(外文):Yuan-Yao Li
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:138
中文關鍵詞:電弧放電法碳化鈦碳化矽
外文關鍵詞:arc-dischargetitanium carbidesilicon carbide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:468
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是以電弧放電法製備精密陶瓷碳化物奈米材料。依實驗環境區分可分為氣相反應與液相反應。在氣相反應中探討反應電流值、環境壓力、放電時間與陽極石墨棒孔洞內填充不同比例的混合物對生長碳化物奈米材料的影響。利用此方法我們成左獄s備出碳化鈦奈米材料,另外也有奈米碳管、十字形結構等碳簇材料出現。
實驗參數包括有改變電流值範圍從60安培 ~ 300安培,環境壓力控制在100 ~ 600 torr,放電時間10 ~ 90秒,並在陽極石墨棒孔洞內完全填入鈦粉。實驗結果經高解析穿透式電子顯微鏡與場發射掃瞄式電子顯微鏡檢測,顯示得到碳化鈦一維奈米結構的最佳實驗參數為電流值300安培,環境壓力500 torr,放電時間60秒,可以得到直徑分佈範圍在20 ~ 40 nm,長度小於5 μm的碳化鈦奈米結構。而當環境壓力為200 torr,電流在300安培,放電時間小於1分鐘以內皆可得到不錯的碳化鈦結晶強度。
液相部分則是合成碳化矽奈米結構,以矽粉或二氧化矽作為矽源,使用石墨棒與石墨粉為碳源,改變矽源與碳源比例在水溶液內進行電弧放電反應。由實驗結果可以得知在陽極石墨棒孔洞內完全填入矽粉或二氧化矽粉可以製備出碳化矽一維奈米結構,直徑範圍分佈在20 ~ 30 nm與40 ~ 50 nm。
The fabrication of carbide nanomaterials by the use of arc discharge was investigated. According to the experimental environment, the study was divided into two parts: arc in gas phase and in water. Reaction parameters, such as operating electrical current, pressure, reaction time, mixture ratio of the filling, etc, were discussed for the formation of carbide nanomaterials.
In the study of arc discharge in gas environment, we can synthesize one-dimension nanostructures of titanium carbide with diameters ranging from 20 to 40 nm and lengths less than 5 μm. We also found some carbon-based nanomaterials, such as multi-walled carbon nanotubes and carbon nanotube with cross structures. Furthermore, one-dimension nanostructures of silicon carbides were observed in submerged arc experiments.
FESEM、HRTEM、XRD and Raman analysis were used to study the morphology, structure, composition and crystallography of the cathode deposit, respectively.
中文摘要 I
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1-1 陶瓷材料 1
1-2 碳化物陶瓷材料 4
1-3 碳化鈦的特性 5
1-4 碳化鈦常見合成法 9
1-4-1 化學氣相沉積法(Chemical Vapor Deposition,CVD) 9
1-4-2 奈米碳管模板法(Carbon Nanotube Template) 11
1-4-3熱還原法(Thermal Reduction) 12
1-4-4 電弧放電法(Arc Discharge) 14
第二章 電弧放電法文獻回顧 16
2-1氣相電弧放電法 16
2-1-1直流電弧電漿噴射法(DC arc plasma jet method) 16
2-1-2旋轉電極法(plasma rotating arc discharge) 18
2-1-3氣體噴射法 19
2-1-4改變陰極電極之形狀 20
2-1-5常壓電弧炬(open air synthesis with welding arc torch) 21
2-1-6外加磁場法(magnetic field synthesis) 22
2-2液相電弧放電法 24
2-2-1環境溶液為去離子水或液態氮,陽極無觸媒 26
2-2-2環境溶液為去離子水或液態氮,陽極填充觸媒 28
2-2-3環境溶液為水溶液,陽極無觸媒 29
2-2-4環境溶液為水溶液,陽極填充觸媒 31
2-2-5改變陽極材料 32
2-3研究動機與目的 34
第三章 實驗步驟與方法 43
3-1 氣相反應 43
3-1-1實驗裝置 43
3-1-2實驗材料 46
3-1-3 陽極石墨棒前處理 46
3-1-4 實驗步驟 47
3-1-5 實驗步驟流程圖 48
3-1-6 實驗條件 49
3-2 液相反應 50
3-2-1實驗裝置 50
3-2-2 實驗材料 52
3-2-3 陽極石墨棒前處理 52
3-2-4 實驗步驟 53
3-2-5 實驗步驟流程圖 54
3-2-6 實驗條件 55
3-3 分析與鑑定 56
3-3-1 表面形態分析 56
3-3-2 奈米結構分析 57
3-3-3 成份組成與鍵結形態分析 57
第四章 結果與討論 59
4-1氣相電弧放電法 59
4-1-1在相對高、低壓下改變電流值對製備碳化鈦奈米材料的影響 59
4-1-1-1在相對高壓(500 torr)下改變電流值製備碳化鈦奈米材料 59
4-1-1-2在相對低壓(200 torr)下改變電流值製備碳化鈦奈米材料 62
4-1-1-3電流值改變在相對高、低壓下的探討 63
4-1-2壓力改變對製備碳化鈦奈米材料的影響 65
4-1-2-1陰極沉積物表面形態的觀察 65
4-1-2-2壓力改變對製備碳化鈦奈米材料的探討 67
4-1-3放電時間長短對製備碳化鈦奈米材料的影響 69
4-1-3-1陰極沉積物表面形態的觀察 69
4-1-3-2放電時間改變對合成碳化鈦奈米材料的探討 70
4-1-4改變前驅物鈦粉或二氧化鈦和石墨粉混合比例製備碳化鈦奈米材料 72
4-1-4-1前驅物以鈦粉和石墨粉不同比例混合進行電弧放電反應 72
4-1-4-2前驅物以二氧化鈦和石墨粉不同比例混合進行電弧放電反應 74
4-1-4-3改變前驅物鈦粉/石墨粉與二氧化鈦/石墨粉不同混合比例進行電弧放電反應之探討 75
4-2液相電弧放電法 76
4-2-1在液相環境中製備奈米碳管 76
4-2-2改變前驅物矽粉和石墨粉混合比例製備碳化矽奈米材料 78
4-2-3改變前驅物二氧化矽和石墨粉混合比例製備碳化矽奈米材料 80
4-2-4改變前驅物矽/石墨粉與二氧化矽/石墨粉不同混合比例進行電弧放電反應之探討 82
參考文獻 132
[1]http://www.chiculture.net/0817/html/a00/0817a00.html
[2]http://www.chshc.com/ceramics/ceramics06.html
[3]K. Storms, The refractory carbide, Refractory Materials, 2, 1-17 (1967)
[4]S. Jonsson, Assessment of the Ti-C system, Z. Metallkd., 87, 703-711 (1996)
[5]Y. G. Yuan, J. S. Pan, The effect of vapor phase on the growth of TiC whiskers prepared by chemical vapor deposition, Journal of Crystal Growth, 193, 585-591 (1998)
[6]J. Pan, R. Cao, Y. Yuan, A new approach to the mass production of titanium carbide, nitride and carbonitride whiskers by spouted bed chemical vapor deposition, Materials Letters, 60, 626-629 (2006)
[7]C. H. Liang, G. W. Meng, W. Chen, Y. W. Wang, L. D. Zhang, Growth and characterization of TiC nanorods activated by nickel nanoparticles, Journal of Crystal Growth, 220, 296-300 (2000)
[8]S. R. Qi, X. T. Huang, Z. W. Gan, X. x. Ding, Y. Cheng, Synthesis of titanium carbide nanowires, Journal of Crystal Growth, 219, 485-488 (2000)
[9]H. J. Dai, E. W. Wong, C. M. Lieber, Synthesis and characterization of carbide nanorods, Nature, 375, 769-771 (1995)
[10]E. W. Wong, B. W. Maynor, L. D. Burns, C. M. Lieber, Growth of metal carbide nanotubes and nanorods, Chemistry of Materials, 8, 2041-2046 (1996)
[11]R. V. Krishnarao, J. Subrahmanyam, V. Ramakrishna, Synthesis of TiC whiskers through carbothermal reduction of TiO2, Journal of Materials Synthesis and Processing, 9, 1-10 (2001)
[12]D. W. Lee, B. K. Kim, Synthesis of nano-structured titanium carbide by Mg-thermal reduction, Scripta Materialia, 48, 1513-1518 (2003)
[13]Y. Saito, T. Matsumoto, K. Nishikubo, Encapsulation of TiC and HfC crystallites within graphite cages by arc discharge, Carbon, 35, 1757-1763 (1997)
[14]E. Restrepo, V. Benavides, A. Devia, S. Olarte, M. Arroyave, Y. C. Arango, Study of multilayer coatings of Ti/TiN/TiC produced by pulsed arc discharge, Brazilian Journal of Physics, 34, 1748-1751 (2004)
[15]Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, S. Iijima, Mass production of single-wall carbon nanotubes by the arc plasma jet method, Chemical Physics Letters, 323, 580-585 (2000)
[16]S. J. Lee, H. K. Baik, J. E. Yoo, J. H. Han, Large scale synthesis of carbon nanotubes by plasma rotating arc discharge technique, Diamond and Related Materials, 11, 914-917 (2002)
[17]J. M .Bonard, S. Seraphin, J. E. Wegrowe, J. Jiao, A. Chatelain, Varying the size and magnetic properties of carbon-encapsulated cobalt particles, Chemical Physics Letters, 343, 251-257 (2001)
[18]J. Jiao, S. Seraphin, Single-walled tubes and encapsulated nanoparticles: comparison of structural properties of carbon nanoclusters prepared by three different methods, Journal of Physics and Chemistry of Solids, 61, 1055-1067 (2000)
[19]H. Huang, H. Kajiura, S. Tsutsui, Y. Murakami, M. Ata, High- quality double-walled carbon nanotubes super bundles grown in a Hydrogen-free atmosphere, The Journal of Physical Chemistry B, 107, 8794-8798 (2003)
[20]H. Takikawa, M. Ikeda, K. Hirahara, Y. Hibi, Y. Tao, P. A. R. Jr., T. Sakakibara, S. Itoh, S. Iijima, Fabrication of single-walled carbon nanotubes and nanohorns by means of a torch arc in open air, Physica B, 323, 277-279 (2002)
[21]K. Anazawa, K. Shimotani, C. Manabe, H. Watanabe, M. Shimizu, High-purity carbon nanotubes synthesis method by an arc discharging in magnetic field, Applied Physics Letters, 81, 739-741 (2002)
[22]Y. L. Hsin, K. C. Hwang, F. R. Chen, J. J. Kai, Production and in-situ metal filling of carbon nanotubes in water, Advanced Materials, 13, 830-833 (2001)
[23]N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K. B. K. Teo, G. A. J. Amaratunga, Properties of carbon onions produced by an arc discharge in water, Journal of Applied Physics, 92, 2783-2788 (2002)
[24]M. Ishigami, J. Cumings, A. Zettl, S. Chen, A simple method for the continuous production of carbon nanotubes, Chemical Physics Letters, 319, 457-459 (2000)
[25]N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G. A. J. Amaratunga, Synthesis of carbon ‘onions’ in water, Nature, 414, 506-507 (2001)
[26]N. Sano, M. Naito, M. Chhowalla, T. Kikuchi, S. Matsuda, K. Iimura, H. Wang, T. Kanki, G. A. J. Amaratunga, Pressure effects on nanotubes formation using the submerged arc in water method, Chemical Physics Letters, 378, 29-34 (2003)
[27]N. Sano, T. Charinpanitkul, T. Kanki, W. Tanthapanichakoon, Controlled synthesis of carbon nanoparticles by arc in water method with forced convective jet, Journal of Applied Physics, 96, 645-649 (2004)
[28]I. Alexandrou, H. Wang, N. Sano, G. A. J. Amaratunga, Structure of carbon onions and nanotubes formed by arc in liquids, Journal of Chemical Physics, 120, 1055-1058 (2004)
[29]M. V. Antisari, R. Marazzi, R. Krsmanovic, Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments, Carbon, 41, 2393-2401 (2003)
[30]Y. Yao, R. Wang, D. Wei, D. Du, J. Liang, Investigation of carbon nanotube deposits and their formation conditions by an arc-discharge method in water, Nanotechnology, 15, 555-558 (2004)
[31]S. H. Jung, M. R. Kim, S. H. Jeong, S. U. Kim, O. J. Lee, K. H. Lee, J. H. Suh, C. K. Park, High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen, Applied Physics A: Materials Science & Processing, 76, 285-286 (2003)
[32]N. Sano, Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection, Journal of Physics D: Applied Physics, 37, 17-20 (2004)
[33]H. Wang, M. Chhowalla, N. Sano, S. Jia, G. A. J. Amaratunga, Large-scale synthesis of single-walled carbon nanohorns by submerged arc, Nanotechnology, 15, 546-550 (2004)
[34]X. Li, H. Zhu, B. Jiang, J. Ding, C. Xu, D. Wu, High-yield synthesis of multi-walled carbon nanotubes by water-protected arc discharge method, Carbon, 411, 1645-1687 (2002)
[35]H. Lang, M. Sioda, A. Huczko, Y. Q. Zhu, H. W. Kroto, D. R. M. Walton, Nanocarbon production by arc discharge in water, Carbon, 41, 1617-1623 (2003)
[36]N. Sano, Separated syntheses of Gd-hybridized single-wall carbon nanohorns, single-wall nanotubes and multi-wall nanostructures by arc discharge in water with support of gas injection, Carbon, 43, 450-453 (2005)
[37]K. H. Ang, I. Alexandrou, N. D. Mathur, G..A. J. Amaratunga, S. Haq, The effect of carbon encapsulation on the magnetic properties of Ni nanoparticles produced by arc discharge in de-ionized water, Nanotechnology, 15, 520-524 (2004)
[38]J. Qiu, Y. Li, Y. Wang, Z. Zhao, Y. Zhou, Y. Wang, Synthesis of carbon-encapsulated nickel nanocrystals by arc-discharge of coal-based carbons in water, Fuel, 83, 615-617 (2004)
[39]N. Sano, J. Nakano, T. Kanki, Synthesis of single-walled carbon nanotubes with nanohorns by arc in liquid nitrogen, Carbon, 42, 686-688 (2004)
[40]N. Sano, Formation of multi-shelled carbon nanoparticles by arc discharge in liquid benzene, Materials Chemistry and Physics, 88, 235-238 (2004)
[41]D. Bera, S. C. Kuiry, M. McCutchen, S. Seal, H. Heinrich, G. C. Slane, In situ synthesis of carbon nanotubes decorated with palladium nanoparticles using arc-discharge in solution method, Journal of Applied Physics, 96, 5152-5157 (2004)
[42]D. Bera, S. C. Kuiry, M. Mcutchen, A. Kruize, H. Heinrich, M. Meyyappan, S. Seal, In-situ synthesis of palladium nanoparticles-filled carbon nanotubes using arc-discharge in solution, Chemical Physics Letters, 386, 364-368 (2004)
[43]L. A. Montoro, R. C. Z. Lofrano, J. M. Rosolen, Synthesis of single-walled and multi-walled carbon nanotubes by arc-water method, Carbon, 43, 200-203 (2005)
[44]S. D. Wang, M. H. Chang, K. M. D. Lan, C. C. Wu, J. J. Cheng, H. K. Chang, Synthesis of carbon nanotubes by arc discharge in sodium chloride solution, Carbon, 43, 1792-1795 (2005)
[45]H. W. Zhu, X. S. Li, B. Jiang, C. L. Xu, Y. F. Zhu, D. H. Wu, X. H. Chen, Formation of carbon nanotubes in water by the electric-arc technique, Chemical Physics Letters, 366, 664-669 (2002)
[46]E. Shibata, R. Sergiienko, H. Suwa, T. Nakamura, Synthesis of amorphous carbon particles by an electric arc in the ultrasonic cavitation field of liquid benzene, Carbon, 42, 885-901 (2004)
[47]C. H. Lo, T. T. Tsung, L. C. Chen, Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS), Journal of Crystal Growth, 277, 636-642 (2005)
[48]W. T. Yao, S. H. Yu, Y. Zhou, J. Jiang, Q. S. Wu, L. Zhang, J. Jiang, Formation of Uinform CuO Nanorods by Spontaneous Aggregation-Selective synthesis of CuO, Cu2O, and Cu Nanoparticles by a Solid-Liquid Phase Arc discharge process, The Journal of Physical Chemistry B, 109, 14011-14016 (2005)
[49]S. M. Liu, M. Kobayashi, S. Sato, K. Kimura, Synthesis of silicon nanowires and nanoparticles by arc-discharge in water, Chemical Communications, 4690-4692 (2005)
[50]E. I. Waldorff, A. M. Waas, P. P. Friedmann, M Keidar, Characterization of carbon nanotubes produced by arc discharge: effect of the background pressure, Journal of Applied Physics, 95, 2749-2754 (2004)
[51]Y. S. Park, K. S. Kim, H. J. Jeong, W. S. Kim, J. M. Moon, K. H. An, D. J. Bae, Y. S. Lee, G. S. Park, Y. H. Lee, Low pressure synthesis of single-walled carbon nanotubes by arc discharge, Synthetic Metals, 126, 245-251 (2002)
[52]Y. Saito, Y. Tani, Diameters of single-wall carbon nanotubes depending on helium gas pressure in an arc discharge, Journal of Physical Chemistry B, 104, 2495-2499 (2000)
[53]H. Y. Zhang, D. G. Wang, X. M. Xue, B. Q. Chen, S. O. Peng, The effect of helium gas pressure on the formation and yield of nanotubes in arc discharge, Journal of Physics D: Applied Physics, 30, L1-L4 (1997)
[54]A. V. Okotrub, L. G. Bulusheva, A. I. Romanenko, A. L. Chuvilin, N. A. Rudina, Y. V. Shubin, N. F. Yudanov, A. V. Gusel’nikov, Anisotropic properties of carbonaceous material produced in arc discharge, Applied Physics A: Materials Science & Processing, 72, 481-486 (2001)
[55]邱勝正,利用電弧放電法製備精密陶瓷及碳簇一維奈米結構,國立中正大學化學工程研究所碩士論文,民國九十三年
[56]P. Nikolaev, M .J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, 313, 91-97 (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top