跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉盈裕
研究生(外文):Ying-Yu Liu
論文名稱:活性碳於空氣污染防治之應用
論文名稱(外文):Active Carbon for Air Pollution Control
指導教授:張仁瑞
指導教授(外文):Jen-Ray Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:118
中文關鍵詞:再分散聚集氯氧化法活性碳
外文關鍵詞:aggregationactive carbonoxychlorinationredispersionplatinum
相關次數:
  • 被引用被引用:15
  • 點閱點閱:722
  • 評分評分:
  • 下載下載:198
  • 收藏至我的研究室書目清單書目收藏:3
吸附法常用來吸附於在塑膠回收程序中所散發出的揮發性有機氣體(VOCs)及臭氣。而吸附VOC飽和之吸附劑將利用濕式氧化法(WAO)將其再生。濕式氧化過程中,在活性碳擔體上的Pt金屬叢聚集成大顆粒而導致觸媒活性失活。為了再生已失活之觸媒,我們將利用氯氧化法來再分散已聚集之Pt金屬叢。我們用活性碳(GAC830)及竹炭作為本研究的吸附劑,並利用GC-Mass來分析塑膠回收程序中揮發物質成份。GC-Mass之結果顯示耐隆(nylon)回收產生之廢氣主要以戊烷、甲基戊烷、及乙醛為主;聚乙烯、聚丙烯以烷類及烯類為主;寶特瓶(PET)以甲醇、乙醛、及乙酸為主;而苯乙烯則以異戊烷、苯乙烯、及二甲苯為主。為了簡化吸附實驗,我們以甲苯、甲醇氣體當作極性有機氣體之模式廢氣,而正己烷、環己烷為非極性之模式廢氣測試GAC830及竹炭之吸附能力,實驗結果顯示,每克之GAC830可吸附0.13克之極性氣體,或0.17克之非極性氣體;而竹炭之吸附量則分別為0.10克和0.12克。至於濕式氧化後之觸媒再生,將利用氯氧化法將失活之Pt/C觸媒將其再生。其結果顯示,因為活性碳在400℃始燃燒所造成之溫度限制,使得鉑金屬顆粒無法達到新鮮觸媒之分散度。藉由EXAFS、XRD及XANES分析結果,其可能的再分散之機制,在再分散過程中,因為PtClx物質的形成,使得鉑金屬叢在活性碳擔體上延展開來。在氫氣還原過程中,因PtClx與活性碳表面之間的作用力強,阻止了鉑金屬叢的聚集。
Adsorption method was used to decrease volatile organic compounds (VOCs) and odors fraction emitted from waste-plastic recycle process. The VOC saturated adsorbent was then regenerated by wet air oxidation (WAO). During the wet air oxidation, Pt clusters on the carbon support were aggregated to bigger particles leading to a catalyst deactivation. In order to regenerate the sintered catalysts, oxychlorination technique was used to redisperse the aggregated Pt clusters. Active carbon (GAC830) and bamboo carbon were used as adsorbents in this study and GC-Mass was used to characterize the species evolved from waste-plastic recycle process. The results indicated that pentane, isopentane, and acetaldehyde are the main species evolved from nylon recycle process, paraffins and olefins from polyethylene, methanol, acetaldehyde, acetic acid from polyethylene terephthalate, and isopentane, styrene, and xylene from emulsified polystyrene. Model gas, air containing toluene, and methanol (polar) and air containing hexane and cyclohexane (non-polar) air were used to test the adsorption capacity and the results indicated that GAC-830 is superior to bamboo carbon; 0.13 g polar and 0.17 g non-polar species, respectively, for GAC-830 and 0.10 and 0.12 g, respectively, for bamboo carbon. As to the catalyst regeneration, after wet-air oxidation, the deactivated Pt/C catalysts was regenerated by oxychlorination and the results indicated that the activity can only be recovered partially because of the limitation of carbon combustion commenced at 400 °C. By EXAFS、XRD and XANES, the redispersion mechanism was proposed as the spreading of Pt clusters on carbon support because of the formation of PtClx species during the redispersion process. The high affinity between PtClx and carbon surface retards the growth of Pt clusters toward 3-dimensionsl during hydrogen reduction step.
中文摘要…………………………….....……………………….………...…Ⅰ
Abstract………………………………………………………….………..…Ⅲ
目錄………………………………………………………………..………...Ⅴ
表目錄……………………………………………………………..………...IX
圖目錄…………………………………………………………..……………X
第一章 序論………………………………………………………………….1
1.1 空氣污染概述………………………………………………….………1
1.2 空氣污染之處理方式…………………………………………..……...3
1.3 研究動機…...………………………………………………………….4
1.4 研究目的…...…………………………………………………………10
1.4 理論說明...……………………………………………………………11
1.5.1 吸附理論………………….……………………………………11
1.5.1.1 典型吸附之型態………………………………………12
1.5.1.2 吸附原理(Principle of Adsorption)…………………..15
1.5.2 金屬活性衰減之原因………………….………………………19
1.6 文獻回顧…..…………………………………………………………21
1.6.1 臭氣去除之技術………….……..………………..……………21
1.6.2 濕式催化氧化法………….…..……..……..……..……………24
1.6.3 支撐式鉑觸媒再分散之相關研究……………….……………25
第二章 實驗部份…………………………………………………………...32
2.1 簡介...…………………………………………………….…………...32
2.2 實驗流程...…………………………………………………….……...34
2.2.1 實驗所用之藥品………………...…………..…………………34
2.2.2 載體之特性與選擇……….……………………………………34
2.2.2.1 塑膠廢氣取樣及成份分析……………………………34
2.2.2.2 塑膠廢氣吸附………………….………...……………35
2.2.3 鉑金屬觸媒之製備……….……………………………………36
2.2.4 再分散反應所需鉑金屬觸媒之製備..…...……………………37
2.2.5 氯氧化再分散反應設備….……………………………………38
2.2.6 針對不同氯氧化反應溫度探討..………………………...........38
2.2.7 老化測試-溼式氧化反應設備..………………..……………...39
2.2.8 反應性能測試..………………………………...………………40
2.3 特性分析儀器……………………………………………...…………52
2.3.1程溫氧化 (Temperature Programmed oxidation;TPO).......….52
2.3.1a 前言…………………………………………………………...52
2.3.1b 原理介紹……………………………………………………...52
2.3.1c 實驗步驟與條件…..…………..……………………………...53
2.3.2 X-光吸收光譜分析(Analysis of X-Ray Absorption
Spectrum)...……..….………...……………………………….54
2.3.2a 前言……………………………...……………………………54
2.3.2b 原理介紹……………………………...………………………56
2.3.2c 量測方法…..…………..…………………...…………………62
2.3.3 粉末X光繞射 ( Powder X-ray Diffraction;XRD )…..…...….63
2.3.4 氣相色層分析儀(Gas Chromatography)…………........………65
2.3.5 掃描式電子顯微鏡(Scanning Electron Microscope).....………68
2.3.6 穿透式電子顯微鏡( Transmission Electron Microscopy)…….70
2.3.7 表面積測定儀(Brunauer Emmett Teller)………………...........73
第三章 結果與討論………………………………………………..……….76
3.1 擔體之選擇... …………………………………………...……………76
3.1.1 前言…………………………………………………….……...76
3.1.2 掃描式電子顯微鏡與表面積測定儀之分析………….……...77
3.1.3 廢塑膠廢氣成份之分析……………………………….……...77
3.1.4 吸附性能測試………………………………………….……...78
3.1.5 結論…………………………………………………….……...79
3.2 不同氯氧化再分散反應溫度對金屬顆粒大小之影響…….…..........88
3.2.1 前言……………..………………………………………..........88
3.2.2 延伸X 射線吸收細微結構(Extened X-Ray Absorption Fine
Structure , EXAFS)光譜數據分析…...........………………......89
3.2.3 結論…………………………………………….……………...93
3.3 老化性能測試…………….......…………………………...…………98
3.3.1 前言……………………………………………………...….…98
3.3.2 老化測試反應…………………………………………………99
3.3.3 粉末X光繞射 ( Powder X-ray Diffraction;XRD )之光譜數
據分析...............................................................................…...101
3.3.4 近吸收邊緣光譜結構(XANES)之光譜數據分析…………..103
3.3.5 結論…………………………………………………….….....104
第四章 總結與未來展望. …………………………………….……..........112
4.1 總結…………………………………………………………….112
4.2 未來展望……………………………………………………….114
參考文獻……………………………………………………………...........115
Book:
1. 林宗謨,碩士論文,「利用X射線延伸細微結構光譜探討鉑金屬再分散之微結構變化」,民國九十一年。
2. 郭銘修,碩士論文,「支撐式鉑金屬觸媒再分散之化學現象」,民國九十二年。
3. 張家棋,碩士論文,「鉑金屬觸媒氯氧化再分散最適化條件之探討」,民國九十二年。
4. 江宏毅,碩士論文,「Pt/TiO2-C在濕式氧化之催化行為」,民國九十四年。
5. 汪建民,材料分析,第11~72頁,新竹市,民全書局,民國九十四年。
6. D.C. Koningsberger, R. Prins, X-Ray Absorption: Principles, Applications,Techniques of EXAFS, SEXAFS, and XANES, Wiley, New York, 1988.
7. K. Asakura, in: Y. Iwasawa (Ed.), X-Ray Absorption Fine Structure for Catalysts and Surface, World Scientific, Singapore, 1995, p.33.
8. Bianconi, A., Incoccia, L.,Stipcich, S., EXAFS and Near Edge Structure, Springer-Verlag, 1982.
9. R. Aris, in: G.F. Froment, K.B. Bischoff (Eds.), Chemical Reactor Analysis and Design, Wiley, New York, 1990, p.171.
10. S. E. Wanke, J. A. Szymura, and T. T. Yu, in Catalyst Deactivation (E. E. Petersen and A. T. Bell, eds.), Marcel Dekker, New York, 1986, p.65.
Journals:
1.A. Fortuny, J. Font, A. Fabregat, ”Wet air oxidation of phenol using active carbon as catalyst”, Appl. Catal. , 1998, B 19, 165.
2.A. Fortuny, C. Miro, J. Font, A. Fabregat, ” Three-phase reactors for environmental remediation:catalytic wet oxidation of phenol using active carbon”, Catal. Today, 1998, 48, 323.
3.A. Monzon, T. F. Garetto, A.,Borgna, ”Sintering of Chlorinated Pt/γ-Al2O3 Catalysts : a kinetic model ”, App.Catal., 2003, 248, 279.
4.Birke, P., Engels, S.,Becker, K., Neubauer, H. D., Chem.Technol., 1980, 32, 253.
5.Cheremisinoff, P. N., “Industrial Odor Control”, Butterworth -Heinemann Ltd., 1988.
6.Dupuy, Georges, Daumas, Jean C., Delahaye, Jean., “Catalytic recovery of sulfur from gas mixtures”(Rhone-Progil). Ger. Offen., 1973.
7.D. Paynter, and B. B. Fuqna, U.S. Patent, 1977, 4, 046, 673.
8.「Gas Cleaning Odor Control VOC Abatement.」,Enviro-Chem system Monsanto Company,Missouri USA.
9.E. Auer, A. Freund, J. Pietsch, T. Tacke,”Carbons as supports for industrial precious metal catalysts”, Applied Catalysis, 1998, A 173, 259-271.
10.E. C. Haun, U.S. Patent, 1996, 5, 527, 750.
11.F.L. Normand;A.,Borgna;T.F.,Garetto, ”Redispersion of sintered Pt/Al2O3 Naphtha Reforming Catalysts:An in Situ Study Monitored by X-ray Absorption Spectroscopy”, J.Phys.Chem., 1996, 100, 9068
12.F. Luck,”Wet air oxidation: past, present and future”, Catalysis Today, 1999, 53, 81–91.
13.Hiraishi, Yasuhiro; Hirai, Takayuki; Komasawa, Isao., “Oxidative desul furization process for light oil using titanium silicate molecular sieve catalysts” Journal of Chemical Engineering of Japan, 2002, 35(12), 1305-1311.
14.Inorganic Crystal Structure Database (ICSD for WWW).
15.Ishizaki, Chanel; Cookson, John T., Jr., “Adsorption of sulfur-containing taste and odor compounds.” Journal Water Pollution Control Federation, 1973, 45(3), 515-22.
16.J.B.A.D. Van Zon, Ph.D. Dissertation, Eindhoven Univ. Technology, The Netherlands, 1988.
17.Janez Levec, Albin Pintar, ”Catalytic oxidation of aqueous solutions of organics-An effective method for removal of toxic pollutants from waste waters”, Catalysis Today, 1995, 24, 51-58.
18.J. C. Hayes, U.S. Patent, 1969, 3, 622, 520.
19.Cheng-Chieh Shih, Jen-Ray Chang, “Pt/C stabilization for catalytic wet-air oxidation: Use of grafted TiO2”, Journal of Catalysis, 2006, 240, 137-150.
20.K. Foger;H. Jaeger, “The Effect of Chlorine Treatment on the Dispersion of Platinum Metal Particles Supported on Silica and γ-Al2O3”, Journal of Catalysis, 1985, 92, 64.
21.Kullavanijaya, Emwajee , “The treatment of binary VOC mixtures by adsorption and oxidation using activated carbon and a palladium catalyst” Journal of Chemical Technology and Biotechnology, 2002, 77(4), 473-480.
22.Matros, Yurii S.; Meyer, Steven F., “Process for removal of divalent sulfur compounds from waste gases” United States Patent, 1997, 5, 658, 541.
23.S.K. Purnell, K.M. Sanchez, R. Patrini, J.-R. Chang, B.C. Gates, “Genesis and Growth of Pt Particles on MgO: Characterization of X-ray Absorption Spectroscopy and Infrared Spectroscopy”, J. Phys.Chem., 1994, 98, 1205.
24.Sushumna E., Ruckenstein, “Events Observed and Evidence for Crystallite Migration in Pt/Al2O3 Catalysts”, Journal of Catalysis, 1988, 109, 433.
25.S. C. Fung, CHEM-TECH, (Jan), 1996, 40.
26.S. C. Fung , Redispersion of iridium using in situ chlorine generation and avoiding iron contamination , Catalysis Today, 1999, 53, 325.
27.Vedprakash S. Mishra, Vijaykumar V. Mahajani, and Jyeshtharaj B. Joshi, ” Wet Air Oxidation”, Ind. Eng. Chem. Res., 1995, 34, 2-48.
28.W. S. Kmak, and D. J. Yates, U.S. Patent, 1976, 3, 941, 682.
29.Wynblatt, P., Gjostein, N. A., Prog. Solid State Chem., 1974, 9, 21.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top