跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇哲弘
研究生(外文):Jen-Hong Su
論文名稱:選擇性氧化多壁奈米碳管之特性研究
論文名稱(外文):Characterization of Selective-Oxidized Multiwalled Carbon Nanotubes
指導教授:胡啟章
指導教授(外文):Chi-Chang Hu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:144
中文關鍵詞:奈米碳管程式升溫選擇性氧化碳氧官能基純化多步驟氧化比電容量
外文關鍵詞:temperature programmed oxidationmulti-walled carbon nanotubesspecific capacitanceoxygen-containing functional groupspurificationmulti-step oxidation
相關次數:
  • 被引用被引用:7
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的是利用程式升溫方式,在空氣中氧化奈米碳管並找出純化奈米碳管的最佳程式,且藉由整體重量變化觀察碳管純化的程度。並嘗試用多步驟的氣相和液相氧化奈米碳管,探討氧化後碳管電化學電容的行為。
第一部份以升溫及持溫共八段程式在空氣中氧化奈米碳管,藉由熱重分析探討每段程式與重量變化的關係,並研究各步驟氧化後碳管的材料及電化學特性。當程式溫度在400-450℃中重量會有上升再下降的情形,材料分析結果顯示其碳管純度最好,推測在此溫度範圍中有能去除非晶形碳但能保持碳管完整性的溫度。此外利用TPD分析碳管表面之氧官能基,顯示出原始碳管上釋出CO2之碳氧官能基隨著程式升溫氧化減少但釋出CO之碳氧官能基增加,顯示氣相氧化易於碳管上產生釋出CO的碳氧官能基。電化學電容行為在氧化溫度500℃之後,因碳管被破壞表面積變大及有助電容特性的碳氧官能基增加,碳管之比電容值隨著氧化處理上升。
利用第一部分找到可能適合純化的溫度範圍,在其溫度範圍內經過實驗的嘗試我們找到一升溫程式,其程式內容為第一段以升溫速率10℃min-1升溫至440℃並持溫30分鐘,接著以1℃min-1的速率升到450℃並持溫30分鐘。碳管經過此程式氧化後再升溫10℃氧化時,重量維持不變,經由Raman、TEM、TGA材料分析後,其結果顯示碳管的純度提高,因此我們利用所設計的升溫程式能夠選擇性氧化去除非晶形碳但不破壞碳管的完整性,並可藉由重量變化判斷出整體碳管的純度取代以往電子顯微鏡下小範圍的觀察。
第三部分為空氣氧化破壞碳管後,分別以三種不同液相氧化劑:硫酸/硝酸、硫酸/雙氧水、雙氧水/氨水/水加以氧化,探討碳管經多步驟氧化後對電化學電容器性能之影響。再以TPD分析其表面官能基之組成,氣相氧化後釋出CO的官能基增加,而液相氧化後則會使釋出CO2的官能基增加。經過空氣及硫酸/硝酸多步驟氧化後比電容量比原始碳管增加約1.7倍,重量損失35%,而第一部分採用氣相氧化到第八步驟時比電容量增加約1.9倍,重量損失53.3%。但比較兩者重量損失,多步驟氧化碳管增加比電容的經濟效益比單一氣相氧化步驟來的佳。




關鍵字:奈米碳管、程式升溫、選擇性氧化、碳氧官能基、純化、多步驟氧化、比電容量
This study uses temperature programmed oxidation (TPO) to purify the MWNTs in air, performs a two-step modified process, carries out the oxidation in air followed by chemical treatment, and studies the electrochemical characteristics of these oxidized MWNTs electrode for the supercapacitor applications.
Raw MWNTs were oxidized by an 8-step program in air. In step 3 (400-450℃), the weight of MWNTs increases, reaches a maximum, and then decreases with increasing the temperature. These oxidized MWNTs are confirmed to possess the best purity through the textural analyses. The most suitable temperature for purification of MWNTs is between 400-450℃. Temperature programmed desorption (TPD) was employed to analyze the surface oxygen functional groups. The functional groups corresponding to the desorption of CO2 and CO are decreased and increased respectively with the proceeding the TPO. The specific capacitance of MWNTs was found to increase obviously when the oxidation temperatures are higher than 500℃.
An applicable program was proposed to purify MWNTs according to the results in the first part. MWNTs were oxidize at a heating rate of 10℃/min to 440℃ and maintained at 440℃ for 30min, and then oxidized at a heating rate of 1℃/min to 450℃ and keep the same temperature for 30min. After this oxidation program, the weight is not reducing even though the temperature is up to 460℃. Raman, TGA and TEM were used to investigate the changes of these oxidized MWNTs and their purity was improved. The purity is improved due to the removal of amorphous carbon stuck on the MWNT. This TPO procedure is effective for purifying MWNTs and the purity of MWNTs can be easily determined by the weight loss instead of the rough estimation through electron microscopy.
In the last part, a combination of air oxidation and chemical modification of three oxidants were conducted to explore the influence of multi-step oxidation on the capacitive performance of MWNTs. These oxidants are H2SO4/HNO3, H2SO4/H2O2, and H2O2/NH4OH/H2O. The TPD analysis data showed that the amount of CO and CO2 was increased with the applications of gas-phase oxidation and liquid-phase oxidation, respectively. The capacitance of MWNTs with a combined treatment of air and H2SO4/HNO3 oxidation increases from 12.2 to 33.5 Fg-1 and the weight loss were 35%. The capacitance of MWNTs oxidized through the by 8-step temperature program in air increases from 12.2 to 35.3 Fg-1 and the weight loss were 53.3%. For the purpose to increase specific capacitance with a lower weight loss, the multi-step oxidation is more economically benefic than the single air oxidation program.



Keywords:multi-walled carbon nanotubes, temperature programmed oxidation, oxygen-containing functional groups, purification, multi-step oxidation, specific capacitance
中文摘要………………………………………………………………………I
Abstract………………………………...……………………………………III
目錄….……………………………………………………………...………..V
圖目錄…………………………………………...…………………...……...XI
表目錄……………………………………………………………...……XVIII

第一章 緒論………………………………………………………...………..1
1-1 奈米碳管簡介……………………………………………...………1
1-1-1 奈米碳管的歷史……………………………………………1
1-1-2 奈米碳管的結構………………………………………………4
1-1-3 奈米碳管之成長機制…………………………………………8
1-1-4 奈米碳管之製備方法………………………………………..10
1-1-5 奈米碳管之性質……………………………………………..15
1-1-6 奈米碳管之應用……………………………………………..17
1-2 純化奈米碳管……………………..………………...………………20
1-2-1 氧化法……………………………………….…..………...…20
1-2-2 以嵌入觸媒後進行氧化…………………..…………………22
1-2-3 過濾法……….………...……………..………………………23
1-2-4 層析法………………………….…...……..…………………23
1-2-5 微波加熱法…………………………………………………..23
1-2-6 超音波輔助法……………………………………………..…24
1-3 碳管的基本性質………………………………………...…..…...25
1-3-1 熱重量分析(TGA)……………………………………...……25
1-3-2 程溫脫附(TPD)………………………………………....……26
1-3-3 拉曼光譜儀(Raman)………....……………..................……27
1-3-4 氮氣吸附儀…………………………………………………..28
1-4 電化學電容器……………………………………………...…..…...32
1-4-1 電化學反應系統…...…………………………………...……32
1-4-2 電化學電容器………………………………..................……36
1-4-3 電容器碳極的應用…………..………..……..................……39
1-4-4 碳電極之表面改質………………..……................…………41
1-4-5電容測試原理………….………………..................……42
1-5 研究動機與本文大綱………………………………..……………...48

第二章 實驗藥品、儀器、步驟…………………...…………………………50
2-1藥品與儀器…………….………….…………...…………...……….50
2-2石墨基材的製備與前處理…………………...…………...……….52
2-3 第三章八段程式升溫氧化碳管…….……………………...……….53
2-4 第四章六段程式升溫氧化碳管…………....….……………...…….53
2-5 第五章多步驟氧化碳管…………………….....................................54
2-5-1 五段程式升溫……………………………………...………..54
2-5-2液相氧化……………………………………………...……..54
2-6 碳管電極製作……………………………………………………….55
2-7 電化學分析實驗…………………………………………………….55
2-7-1 循環伏安實驗………………..……………………………...57
2-7-2 可逆性實驗………………………………………………….57
2-7-3 充放電實驗………………………………………………….57
2-8 材料分析…………………………………………………………….58
2-8-1 碳管表面結構測試………………………………………….58
2-8-2 含氧官能基分析…………………………………………….58
2-8-3 熱重分析…………………………………………………….59
2-8-4 表面型態觀察……………………………………………….59
2-8-5 微區拉曼光譜分析………………………………………….59
2-8-6 電子能譜化學分析儀……………………………………….60

第三章 空氣下利用程序升溫氧化多壁奈米碳管之特性探討…………...61
3-1 簡介……………………………………………………….………....61
3-2 結果與討論…………………………………………….……………62
3-2-1 氧化後碳管材料特性……………………………………….62
3-2-1-1 TGA分析……………………………………………62
3-2-1-2 TPD分析…………………………………………….67
3-2-1-3 ESCA分析…………………………………………..68
3-2-1-4 Raman分析.…………………………………………70
3-2-1-5 SEM分析……………………………………………72
3-2-1-6 TEM分析……………………………………………75
3-2-2 原始碳管電極電化學特性………………………………….77
3-2-2-1 CV分析……………………………………………...77
3-2-2-2 可逆性測試…………………………………………80
3-2-2-3 充放電測試…………………………………………81
3-2-3 氧化後碳管電極電化學特性……………………………….82
3-3 結論…...…………………….…...………………………………..89

第四章 空氣下以程式升溫純化多壁奈米碳管…………………...............90
4-1 簡介…………………………………………………..……..…….…90
4-2 結果與討論……………...……………………….………………….91
4-2-1 純化前後碳管材料特性…………………………………….91
4-2-1-1 TGA分析……………………………………………91
4-2-1-2 Raman分析.………………………………………..103
4-2-1-3 SEM分析…………………………………………..106
4-2-1-4 TEM分析…….…………………………………….108
4-2-1-5 沈降分析…………………………………………..110
4-2-2 純化前後碳管電化學特性…………………………………111
4-2-2-1 CV分析..…………………………………………...111
4-2-2-2 掃瞄速率的影響…………………………………..116
4-2-2-3 充放電測試及可逆性…………………………….118
4-3 結論………………………………………………………...………121

第五章 多步驟氧化奈米碳管之特性探討…………...…………………122
5-1 簡介……………………………………………………...…………122
5-2 結果與討論.…………………………………………………….…123
5-2-1 氧化後碳管材料分析………………………………………123
5-2-1-1 TPD分析…………………………………………...123
5-2-1-2 BET分析…………………………………………...125
5-2-1-3 SEM分析…………………………………………..127

5-2-1-4 TEM分析.………………………………………….128
5-2-2 氧化步驟後碳管電化學特性探討…………….….……....130
5-2-2-1 CV分析…………………………………………….130
5-2-2-2 掃瞄速率的影響…………………………………..132
5-2-2-3 充放電測試………………………………………..133
5-2-2-4 可逆性測試………………………………………..134
5-3 結論……….…………………………………………………..……136

第六章 總結與展望……………………………………………...………137
6-1 總結………………………………………………...………………137
6-2 建議與展望………………………………………………...………139

參考文獻…………………………………………………………...………140
1.莊鎮宇, “奈米碳管在熱裂解化學氣相沉積法中的成長機制研究”, 國立清華大學工程與系統科學研究所博士論文 (1999).
2.S. Iijima, Nature, 354, 56 (1991).
3.S. Iijima, T. Ichihashi, Y. Ando, Nature, 356, 776 (1992).
4.T. Ichihashi, S. Iijima, Nature, 363, 603(1993).
5.D. S. Bethune, C. H. Kiang, M. S. Vries, G. Gorman, R. Savoy, J. Vasquez, R. Beyers, Nature, 363, 605 (1993).
6.T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett., 243, 49 (1995).
7.P. J. F. Harris, Carbon Nanotubes and Related Structure, Cambridge University Press: New York (1999).
8.T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, J. Phys. Chem. B, 104, 2794 (2000).
9.J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature, 391, 59 (1998).
10.T. Odom, J. Huang, P. Kim, C. Lieber, Nature, 391, 62 (1998).
11.高英哲, “電弧電漿法製備碳微管暨水溶性碳微管之製備及應用”, 國立清華大學化學研究所碩士論文 (2001).
12.P. M. Ajayan, T. W. Ebbesen, Rep. Prog. Phys., 60, 1025 (1997).
13.S. B. Sinnott, R. Andrews., D. Qian., A. M. Rao., Mao Z, E. C. Dickey and F. Derbyshire, Chem. Phys. Lett., 315, 25-30 (1999).
14.D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J.vazquez, R. Beyers, Nature, 363, 605-609 (1993).
15.Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science,273, 483 (1996).
16.Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou and G. Wang, Chem. Phys. Lett., 299, 97-102 (1999).
17.S. Subramoney, Adv. Mater., 1(15), 1157-1171 (1998).
18.Y. S. Park, K. S. Kim, H. J. Jeong, W. S. Kim, J. M. Moon, K. H. An, D. J. Bae, Y. S. Lee, G. S. Park and Y. H. Lee, Synth. Met., 126, 245 (2002).
19.楊育峰, “奈米碳管接枝幾丁聚醣之物性研究”, 國立雲林科技大學工業化學與災害防治研究所碩士論文 (2003).
20.Y. Saito, M. Okuda, M. Tomita and T. Havashi, Chem. Phys. Lett., 236,419 (1995).
21.Ivanov, V., Nagy, J. B. et al. Chem. Phys. Lett., 223, 329 (1994).
22.R. Sen, A. Govindaraj and C. N. R. Rao, Chem. Phys. Lett., 267, 276 (1997).
23.B. I. Yakobson, Appl. Phys. Lett., 8, 918 (1998).
24.L. S. K. Pang, J. D. Saxby, S.P. Chatfield, J. Phys. Chem., 97, 6941 (1993).
25.R. S. Ruoff, D. C. Lorent, Phys. Rev., 33, 925 (1995).
26.S. Berber, Y. K. kwon, D. Tomanek, Phys. Rev. Lett., 84, 4613 (2000).
27.M. A. Osman, D. Srivastava, Nanotechnolory, 12, 21 (2001).
28.W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jinj, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Appl. Phys. Lett., 75, 3129 (1999).
29.S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, Nature, 394, 52 (1998).
30.S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature, 393, 49 (1998).
31.J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science, 287, 622 (2000).
32.P. Kim, C. M. Lieber, Science, 286, 2148 (1999).
33.R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Lqbal, J. N. Barisci, G.M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O.Jaschinski, S. Roth, M. Kertesz, Science, 284, 1340 (1999).
34.L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, Synth. Met., 103, 2492 (1999).
35.S. C. Tsang, P. J. Harris,and M. L. Green, Nature, 362, 520 (1993).
36.Hui Hu, Bin Zhao, Mikhail E. Itkis and Robert C. Haddon, J. Phys. Chem. B, 107, 13838 (2003).
37.Avetik R. Harutyunyan, Bhabendra K. Pradhan, Jiping Chang, Gugang Chen, and Peter C. Eklund, J. Phys. Chem. B, 106, 8671 (2002).
38.K. Hernadi, A. Siska, L. Thie-Nga, L. Forro, and Kiricsi, Solid State Ionics, 141-142, 203 (2001).
39.Yan-hui Li, Shuguang Wang, Zhaokun Luan, Jun Ding,and Cailu Xu, Carbon, 41, 1057 (2003).
40.Yan-hui Li, Shuguang Wang, Jinquan Wei, Xianfeng Zhang, Cailu Xu, Zhaokun Luan, Dehai Wu, and Bingqing Wei, Chem. Phys. Lett., 357, 263 (2002).
41.F. lkazaki, S. Ohshima, K. Uchida, Y. Kuriki, H. Hayakawa, M. Yumura, K. Takahashi and K. Tojima, Carbon, 32, 1539 (1994).
42.G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth, Chem. Commun., 3, 435 (1998).
43.石立節, “奈米碳管酸純化前後表面特性之變化”, 國立中央大學環境工程研究所碩士論文 (2005).
44.Fu-Hsiang Ko, Chung-Yang Lee, Chu-Jung Ko, and Tieh-Chi Chu, Carbon, 43, 727 (2005).
45.Avetik R. Harutyunyan, Bhabendra K. Pradhan, Jiping Chang, Gugang Chen, and Peter C. Eklund, Carbon, 106, 8671 (2002).
46.Konstantin B. Shelimov, Rinat O. Esenaliev, Andrew G. Rinzler, and Chad B. Huffman, Chem. Phys. Lett., 282,429 (1998).
47.L. S. K. Pang, J. D. Saxby, S. P. Chatfield, J. Phys. Chem., 97,6941 (1993).
48.A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J.Rodriguez, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee,J. E. Fischer, A. M. Rao, P. C. Eklund, R. E. Smalley, Appl. Phys. A, 67, 29 (1998).
49.Figueiredo J.L., Pereira M.F.R., Freitas M.M.A., rfo J.J.M, Carbon, 37, 1379 (1999).
50.Hiura H, Ebbesen TW, Tanigaki K, et al, Chem. Phys. Lett., 202, 509 (1993).
51.Eklund P.C, Brabec C, Buongiorno M, Maiti A, Roland C, Yakobson B.I, Appl. Phys. A, 39, 67 (1998).
52.Duong D.Do., Adsorption Analysis: Equilibria and Kinetics, Imperial College
Press, London (1998).
53.粘耀仁, “碳電極之氧官能基對電化學電容之影響”, 國立成奶j學化學工程研究所碩士論文 (2002).
54.A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons, Singapore (1980).
55.D. Pletcher, “A First Course in Electrode Processes”, The Electrochemical Consultancy, England (1991).
56.D. R. Crow, “Principles and Applications of Electrochemistry”, 2nd Ed. Chapman and Hall Ltd. London (1979).
57.胡啟章編著,電化學原理與方法,五南P1.
58.D. Pletcher and F. C. Walsh, Industrial Electrochemistry, Chapman and Hall Ltd. N. Y. (1990).
59.張光揮, “循環伏安置備含水釕銥氧化物於電化學電容器的應用”, 國立中正大學化工研究所碩士論文 (2000).
60.A. M. Couper, D. Pletcher, and F. C. Walsh, Chem. Rev., 90, 837 (1990).
61.Galizzoli D., Tantardini F., Trasatti S., J. Appl. Electrochem., 5, 203 (1975).
62.黃耀煌, “循環伏安法置備之含水釕氧化物於電化學電容器之應用”, 國立中正大學化工研究所碩士論文 (1999).
63.Gregg S.J., and Sing K.S.W., Adsorption, Surface and Porosity; Academic Press,
London (1982).
64.H.K. Song, Y.H. Jung, K.H. Lee, L.H. Dao, Electrochim. Acta., 44, 3513 (1999).
65.D. Qu, H. Shi, J. Power Sources, 74, 99 (1998).
66.C.M. Niu, E.K. Sichel, R. Hoch, Appl. Phys. Lett., 70, 1480 (1997).
67.T.-C. Weng and H. Teng, J. Electrochem. Soc., 148, A368 (2001).
68.H. Shi, Electrochim. Acta., 41, 1633 (1996).
69.I. Tanahashi, A. Yoshida, and A. Nishino, J. Electrochem. Soc., 137, 3052 (1990).
70.T. Nagaoka and T. Yoshino, Anal. Chem., 58, 1037 (1986).
71.T. Nagaoka, T. Fukunaga, T. Yoshino, I. Watanabe, T. Nakayama, and S. Okazaki, Anal. Chem., 60, 2766 (1988).
72.J. M. Miller, B. Dunn, T. D. Tran, and R. W. Pekala, J. Electrochem. Soc., 144,
L309 (1997).
73.A. Nakamura, T. Inui, N. Kinomura, and T. Suzuki, Carbon, 38, 1361 (2000).
74.F. Adib, A. Bagreev, and T. Bandosz, Langmuir, 16, 1980 (2000).
75.K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, John
Wiley & Sons: New York (1988).
76.R. L. McCreery, K. K. Cline, C. A. McDermott, and M. T. McDermott, Colloids
Surf. A, 93, 211 (1994).
77.T. Momma, X. Liu, T. Osaka, Y. Ushio, and Y. Sawada, J. Power Sources, 60,
249 (1996).
78.B. E. Conway, Electrochemical Supercapacitors, p. 259, Kluwer Academic /
Plenum Publishers, New York (1999).
79.J. Koresh and A. Soffer, J. Electrochem. Soc., 124, 1379 (1990).
80.M.S.R. Endo, M.S. Dresselhaus, G.Dresselhaus, in: T.W. Ebbesen (Ed.), Carbon Nanotubes: Preparation and Properties, CRC Press, Boca Raton, FL (1997).
81.H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, R. H. Friend, and A. H. Windle, J. Phys. Chem. B, 103, 8116 (1999).
82.C. Pirlot, I. Willems, A. A. Fonseca, J. B. Nagy, and J. Delhalle, Adv. Eng. Mater. 4, 109 (2002).
83.M. Muller, B. Kastening, J. Electroanal. Chem., 374, 149 (1994).
84.Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferrais JP. J. Power Sources , 47, 89 (1994).
85.J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriquez-Macias, Y.-S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science, 280, 1253 (1998).
86.I.G. Casella, M.R. Cuascito, Electrochim. Acta., 45, 1113 (1999).
87.Bom, D. Andrews, R. Jacques, D., Anthony, J., Chen, B., Meier, M. S., Selegue, J. P., Nano Lett., 2, 615 (2002).
88.E. Frackowiak, S. Depeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoro and F. Beguin, Chem. Phys. Lett., 361, 35 (2002).
89.M. Hughes, M.S.P. Shaffer, A.C. Renouf, C. Singh, G.Z. Chen, D.J. Fray and A.H. Windle, Adv. Mater., 14, 382 (2002).
90.M. Hughes, G.Z. Chen, M.S.P. Shaffer, D.J. Fray and A.H. Windle, Chem. Mater., 14, 1610 (2002).
91.Y.K. Zhou, B.L. He, F.B. Zhang and H.L. Li, J. Solid State Electrochem, 8, 482 (2004)
92.X. Qin, S. Durbach and G.T. Wu, Carbon, 42, 451 (2004).
93.J.H. Park, J.M. Ko and O.O. Park, J. Electrochem. Soc., 150, 864 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top