跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/01 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃治維
研究生(外文):Chih-wei Huang
論文名稱:應用超順磁奈米顆粒高密度種植骨髓間質幹細胞於氧化澱粉—幾丁聚醣支架
論文名稱(外文):High-density seeding of MSC onto oxidized starch-crosslinked chitosan scaffold through the use of superparamagnetic nanoparticles
指導教授:李文乾
指導教授(外文):Wen-Chien Lee
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:121
中文關鍵詞:脈衝式磁場氧化澱粉幾丁聚醣間質幹細胞超順磁奈米顆粒細胞種植
外文關鍵詞:pulse magnetic fieldoxidized starchchitosanmesenchymal stem cellsuperparamagnetic nanoparticles. seeding
相關次數:
  • 被引用被引用:1
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:1
本研究首先利用天然的交聯劑—氧化澱粉,結合天然可降解材料—幾丁聚醣,藉由冷凍乾燥法製備組織工程使用之多孔性支架,並且探討不同濃度的氧化澱粉及各種預冷溫度對幾丁聚醣支架的影響。另一方面提出新的細胞種植技術-使用超順磁氧化鐵奈米顆粒 (SPIONs)經由瞬間磁場的轉導作用,引導奈米顆粒進入間質幹細胞(MSC),並且藉由外加磁場的輔助,使細胞迅速的貼附於支架表面,以獲得高密度的細胞組織。
A novel chitosan-based three-dimensional porous scaffold was prepared by the freeze-drying method through the use of ice crystals as a porogen. The natural polymer oxidized starch, which has been used in medicine and in the food industry, was employed as the crosslinking reagent for the preparation of crosslinked chitosan scaffold. The influence of crosslinker concentration and pre-freezing temperature on the properties of scaffold prepared by freeze-drying was studied. This study also proposed a novel methodology of seeding stem cells onto the scaffold through the use of superparamagnetic iron oxide nanoparticles (SPIONs). Mediated by the pulsed magnetic field, SPIONs were internalized into mesenchymal stem cells (MSCs). The SPION-containing MSCs were then seeded onto the scaffold by the aid of an external magnet to yield a tissue of high cell density.
中文摘要 I
英文摘要 III
目錄 V
圖目錄 X
表目錄 XIII
第一章 緒論 1
1.1 組織工程概論 1
1.2 幹細胞(stem cell)3
1.3 間質幹細胞(mesenchymal stem cell )4
1.4 生醫材料(biomedical materials)9
1.5 可降解之天然高分子-幾丁聚醣 10
1.6 超順磁氧化鐵奈米顆粒(superparamagnetic iron oxide nanoparticles)17
1.7 研究動機與目的 19

第二章 實驗藥品與儀器 22
2.1 實驗藥品 22
2.1.1 骨髓間質幹細胞之分離與培養 22
2.1.2 間質幹細胞誘導分化及細胞染色 23
2.1.3 幾丁聚醣支架製作 24
2.1.4 超順磁氧化鐵奈米顆粒製作 24
2.2 實驗儀器 25

第三章 實驗方法及步驟 27
3.1 實驗流程圖 27
3.2 骨髓間質幹細胞(BMMSC)之分離與培養 28
3.2.1 骨髓間質幹細胞之分離 28
3.2.2 骨髓間質幹細胞之培養 28
3.2.3 骨髓間質幹細胞之繼代培養 29
3.2.4 細胞生長速率測試 29
3.2.5 細胞死亡率測試 29
3.2.6 細胞冷凍保存 30
3.3 間質幹細胞體外分化實驗 30
3.3.1 成骨細胞體外分化實驗 30
3.3.2 脂肪細胞體外分化實驗 31
3.3.3 誘導成骨細胞之 Von Kossa 染色 31
3.3.4 誘導成骨細胞之鹼性磷酸酶染色 31
3.3.5 脂肪細胞之 Oil Red 染色 32
3.4 支架之製備及分析 33
3.4.1 幾丁聚醣-戊二醛支架之製作 33
3.4.2 氧化澱粉溶液之製作 33
3.4.3 幾丁聚醣-氧化澱粉支架之製作 34
3.4.4 支架含水率測試 34
3.4.5 支架孔隙度測試 35
3.4.6 支架結構與孔洞之電子顯微鏡分析 35
3.4.7 幾丁聚醣支架之比表面積實驗 36
3.4.8 幾丁聚醣支架之降解率測試 36
3.5 超順磁氧化鐵奈米顆粒製作與特性分析 37
3.5.1 超順磁氧化鐵奈米顆粒之製作 37
3.5.2 超順磁氧化鐵奈米顆粒之粒徑分析 38
3.5.3 超順磁氧化鐵奈米顆粒之表面電位分析 38
3.5.4 傅立葉轉換紅外線光譜儀分析(FT-IR) 38
3.6 瞬間磁場轉導實驗 39
3.7 細胞種植(seeding)實驗 39
3.8 間質幹細胞之組織培養與分化 40
3.8.1 間質幹細胞之組織培養 40
3.8.2 細胞種植後之支架表面SEM實驗 41
3.9 間質幹細胞組織體外分化及染色實驗 41
3.9.1 組織誘導分化成成骨細胞實驗 41
3.9.2 組織誘導分化成脂肪細胞實驗 41
3.9.3 組織切片實驗 42
3.9.4 分化成骨細胞之組織染色 42
3.9.5 分化脂肪細胞之組織染色 42

第四章 實驗結果與討論 43
4.1 骨髓間質幹細胞的分離與特性探討 43
4.1.1 間質幹細胞的分離與純化 43
4.1.2 間質幹細胞誘導分化成骨細胞 45
4.1.3 間質幹細胞誘導分化脂肪細胞 49
4.2 幾丁聚醣支架的性質測試 52
4.2.1 幾丁聚醣支架的含水率及孔隙度測試 52
4.2.2幾丁聚醣支架微觀結構分析 57
4.2.3 幾丁聚醣支架的比表面積測試 65
4.2.4 幾丁聚醣支架的降解率測試 66
4.3. 超順磁氧化鐵奈米顆粒之結果與討論 70
4.3.1 超順磁氧化鐵奈米顆粒製備 70
4.3.2 超順磁氧化鐵奈米顆粒性質分析 70
4.4 瞬間磁場轉導對間質幹細胞之影響探討 74
4.4.1 瞬間磁場轉導對間質幹細胞之影響 74
4.5 幾丁聚醣支架之細胞種植效率分析 81
4.5.1 氧化澱粉-幾丁聚醣支架之種植效率 81
4.5.2 戊二醛-幾丁聚醣支架之種植效率 83
4.5.3 不同交聯劑對細胞之種植效率探討 84
4.5.4 間質幹細胞種植於幾丁聚醣支架分析 84
4.6 組織生長分化實驗 88
4.6.1 間質幹細胞組織誘導分化探討 88

第五章 結論與建議 94
5.1 結論 94
5.2 建議 95
參考文獻 96
圖目錄
圖一 :組織工程之三大要素 1
圖二 :間質幹細胞之分化能力 6
圖三 :幾丁質去乙醯化 11
圖四 :幾丁聚醣與氧化澱粉之化學反應式 15
圖五 :利用細胞比重差異分離之人體骨髓間質幹細胞 44
圖六 :骨髓間質幹細胞誘導分化成骨細胞 46
圖七 :骨髓間質幹細胞誘導分化成骨細胞之Von Kossa染色 47
圖八 :骨髓間質幹細胞誘導分化成骨細胞之鹼性磷酸酶染色 48
圖九 :骨髓間質幹細胞誘導分化脂肪細胞 50
圖十 :骨髓間質幹細胞誘導分化脂肪細胞之Oil Red染色 51
圖十一 :不同溫度下製備之幾丁聚醣支架含水率。 55
圖十二 :不同交聯劑種類及不同交聯劑濃度製備之幾丁聚醣支架含水率 56
圖十三 :不同交聯劑種類及不同交聯劑濃度製備之幾丁聚醣支架孔隙度 57
圖十四 :幾丁聚醣支架圖 60
圖十五 :不同冷凍溫度下製備之氧化澱粉(1% w/v)+幾丁聚醣(2% w/v)支架SEM圖61
圖十六 :不同冷凍溫度下製備之氧化澱粉(2% w/v)+幾丁聚醣(2% w/v)支架SEM圖62
圖十七 :不同冷凍溫度下製備之氧化澱粉(4% w/v)+幾丁聚醣(2% w/v)支架SEM圖63
圖十八 :不同冷凍溫度下製備之戊二醛+幾丁聚糖(2% w/v)支架SEM圖 64
圖十九 :不同交聯劑種類及不同氧化澱粉濃度製備之支架比表面積 65
圖二十 :氧化澱粉(1% w/v)+幾丁聚醣(2% w/v)支架之降解率 67
圖二十一:氧化澱粉(2% w/v)+幾丁聚醣(2% w/v)支架之降解率 67
圖二十二:氧化澱粉(4% w/v)+幾丁聚醣(2% w/v)支架之降解率 68
圖二十三:戊二醛-幾丁聚醣(2% w/v)支架之降解率 68
圖二十四:不同交聯劑種類及不同氧化澱粉濃度製備之支架的降解率 69
圖二十五:超順磁氧化鐵奈米顆粒之表面電位分析 72
圖二十六:超順磁氧化鐵奈米顆粒之粒徑分析圖 72
圖二十七:超順磁氧化鐵奈米顆粒之 FT-IR 分析 73
圖二十八:超順磁氧化鐵奈米顆粒之磁滯曲線圖 73
圖二十九:瞬間磁場轉導對骨髓間質幹細胞生長之影響 76
圖三十 :瞬間磁場轉導對骨髓間質幹細胞誘導分化成骨細胞之影響 76
圖三十一:瞬間磁場轉導對骨髓間質幹細胞誘導分化成骨細胞之Von Kossa染色的影響77
圖三十二:瞬間磁場轉導對骨髓間質幹細胞誘導分化成骨細胞之鹼性磷酸酶染色的影響77
圖三十三:瞬間磁場轉導對骨髓間質幹細胞誘導分化脂肪細胞之影響 78
圖三十四:瞬間磁場轉導對骨髓間質幹細胞誘導分化脂肪細胞以Oil Red染色之影響 78
圖三十五:瞬間磁場轉導對細胞生長速率之影響 79
圖三十六:超順磁氧化鐵奈米顆粒於骨髓間質幹細胞之觀察 80
圖三十七:氧化澱粉-幾丁聚醣的細胞種植效率圖 82
圖三十八:戊二醛-幾丁聚醣的細胞種植效率圖 83
圖三十九:間質幹細胞種植於支架上之SEM圖 86
圖四十 :細胞種植實驗之死亡率測試 87
圖四十一:間質幹細胞組織誘導分化成骨細胞之切片圖 90
圖四十二:間質幹細胞組織誘導分化成骨細胞第七天之Von Kossa染色圖91
圖四十三:間質幹細胞組織誘導分化成骨細胞之鹼性磷酸酶染色圖92
圖四十四:間質幹細胞組織誘導分化脂肪細胞第七天之Oil Red染色圖93
表目錄
表一 :間質幹細胞培養於降解性生物支架之相關研究 16
廖雅苓 ”磁性奈米與DNA複合體之製備及應用研究” 國立中正大學化學工程研究所碩士論文(2002)

Baksh, D., Song, L., Tuan, R. S., ; Adult mesenchymal stem cells : characterization, differentiation, and application in cell and gene therapy. J. Cell. Mol. Med., 8 (2004) 301-316.

Baran, E. T., Mano, J. F., Reis, R. L., ; Starch-chitosan hydrogel prepared by reductive alkylation cross-linking. J. Mater. Sci. Mater. Med., 15 (2004) 759-765.

Barry, F. P., Boynton, R. E., Haynesworth, S., Murphy, J. M., Zaia, J., ; The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem. Biophys. Res. Commun., 265 (1999) 134-9.

Barry, F. P., Murphy, J. M., ; Mesenchymal stem cells : clinical applications and biological characterization. Int. J. Biochem. Cell. Biol., 36 (2004) 568-584.

Benvenuti, S., Saccardi, R., Luciani, P., Urbanib, S., Deledda, C., I Cellai, I., Francini, F., Squecco, R., Rosati, F., Danzaa, G., Gelmini, S., Greevee, I., Rossi, M., Maggi, R., Serio M., Peri, A., ; Neuronal differentiation of human mesenchymal stem cells : changes in the expression of the Alzheimer's disease-related gene seladin-1. Exp. Cell Res., (2006) article in press.

Bianchi, G., Banfi, A., Mastrogiacomo, M., Notaro, R., Luzzatto, L., Cancedda, R., and Quarto, R., ; Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp. Cell Res., 287 (2003) 98-105.

Bruder, S. P., Ricalton, N. S., Boynton, R. E., Connolly, T. J., Jaiswal, N., Zaia, J., Barry, F. P., ; Mesenchymal stem cell surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenic differentiation. J. Bone. Miner. Res., 13 (1998) 655-63.

Caplan, A. I., ; Mesenchymal stem cells. J. Orthop. Res., 9 (1991) 641-650.

Castro-Malaspina, H., Gay, R. E., Resnick, G., Kapoor, N., Meyers, P., Chiarieri, D., McKenzie, S., Broxmeyer, H. E., Moore, M. A., ; Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood, 56 (1980) 289-301.

Colter, D. C., Class, R., DiGirolamo, C. M., Prockop, D. J., ; Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc. Natl. Acad. Sci. USA., 97 (2000) 3213-3218.

Cristino, S., Grassi, F., Toneguzzi, S., Piacentini, A., Grigolo, B., Santi, S., Riccio, M., Tognana, E., Facchini, A., Lisignoli1, G., ; Analysis of mesenchymal stem cells grown on a threedimensional HYAFF 11-based prototype ligament scaffold. J. Biomed. Mater. Res., 73A, (2005) 275-283.

Deans, R. J., and Moseley, A. B., ; Mesenchymal stem cells : biology and potential clinical uses. Exp. Hematol., 28 (2000) 875-884.

Dietmar, W., Hutmacher; ; Scafolds in tissue engineering bone and cartilage. Biomaterials, 21 (2000) 2529-2543.

Elvira, C., Mano, J. F., Roman, J. S., Reis, R. L., ; Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials, 23 (2002) 1955-1966.

Fickert, S., Fiedler, J., Brenner, R. E., ; Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthr. Cartil., 11 (2003) 790-800.

Freyman, T. M., Yannas, I. V., Gibson, L. J., ; Cellular materials as porous scaffolds for tissue engineering. Progress in Materials Science, 46 (2001) 273-282.

Friedenstein, A. J., Gorskaja, J. F., Kulagina, N. N., ; Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol., 4 (1976) 267-274.

Friendenstein, A. J., ; Precursor cells of mechanocytes. Int. Rev. Cytol., 47 (1976) 327-355.

Friendenstein, A. J., Petrakova, K. V., Kurolesova, A. I., ; Heterotopic transplants of bone marrow, Analysis of precursor cells, for osteogenic and hematotoxic tissues. Transplantation, 6 (1968) 230-247.

Fukuda, K., ; Reprogramming of bone marrow mesenchymalstem cells into cardiomyocytes. C. R. Biologies, 325 (2002) 1027-1038.

Grayson, W. L., Ma, T., and Bunnell, B., ; Human mesenchymal stem cells tissue development in 3D PET. Matrices. Biotechnol. Prog., 20 (2004) 905-912.

German salazar-alvarez ; Synthesis, Characterisation and Applications of Iron Oxide Nanoparticles ; Doctoral Thesis Stockholm, Sweden 2004

Goodwin, S., Peterson, C., Hoh, C., Bittner, C., ; Targeting and retention of magnetic targeted carriers (MTCs)enhancing intra-arterial chemotherapy; Journal of Magnetism and Magnetic Materials, 194 (1999) 132-139.

Gravel, M., Gross, T, Vago, R., Tabrizian, M., ; Responses of mesenchymal stem cell to chitosan-coralline composites microstructured using coralline as gas forming agent. Biomaterials, 27 (2006) 1899-1906.

Gronthos, S., Zannettino, A. C. W., Hay, S. J., Shi, S., Graves, S. E., Kortesidis, A., and Simmons, P. J., ; Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J. Cell. Sci., 116 (2003) 1827-1835.

Haynesworth S. E., Goshima, J., Goldberg, V. M., Caplan, A. I., ; Characterization of cells with osteogenic potential from human marrow. Bone, 13 (1992) 81-88.

Haynesworth, S. E., Baber, M. A., Caplan, A. I., ; Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro : effects of dexamethasone and IL-1 alpha. J. Cell. Physiol., 166 (1996) 585-92.

He, P., Davis, S. S., Illum, L., ; Chitosan microspheres prepared by spray drying. Int. J. Pharm., 187 (1999) 53-65

Hutmacher, D. W., ; Scaffolds in tissue engineering bone and cartilage Biomaterials, 21 (2000) 2529-2543.

Ito, A., Hibino, E., Honda, H., Hata, K., Kagami, H., Ueda, M., Kobayashi, K., ; A new methodology of mesenchymal stem cell expansion using magnetic nanoparticles. Bioche. Eng. J., 20 (2004) 119-125.

Jones, E. A., Kinsey, S. E., English, A., Jones, R. A., Straszynski, L., Meredith, D. M., Markham, A. F., Jack, A., Emery, P., McGonagle, D., ; Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis. Rheum., 46 (2002) 3349-3360.

Jordan, A., Scholz, R., Wust, P., Hling, H. F., Felix, R., ; Magnetic fluid hyperthermia (MFH) : cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 201 (1999) 413-419.

Kim, D. K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., Muhammed, M., ; Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain; Journal of Magnetism and Magnetic Materials, 225 (2001) 256-261.

Kima, H. J., Kim, U. J., Vunjak-Novakovic, G., Min, B. H., Kaplan, D. L., ; Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials, 26 (2005) 4442-4452.

Langer, R., Vacanti, J. P., ; Tissue engineering. Science, 260 (1993) 920-936.

Lee, K. D., Kuo, K. C., Jacqueline, W. P., Chung, Y. F., Lin, C. T., Chou, S. H., Chen, J. R., Chen, Y. P., Lee, O. K. S., ; In vitro hepatic differentiation of human mesenchymal stem cell. Hepatology, 40 (2004) 1275-1284.

Lee, K. Y.; Ha, W. S., : Park, W. H. ; Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials, 16 (1995) 1211-6.

Lim, K. M., Evans G. R. D., ; Tissue Engineering : The Future of Stem Cells 2 (2005) chapter 11 P1-22

Li, W. J., Tuli, R., Okafor, C., Derfoul, A., Danielsonb, K. G., Hall, J. D., Tuan, R. S., ; A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 26 (2005) 599-609.

Liu, X. F., Guan, Y. L., Yang, D. Z., Li, Z., Yao, K. D., ; Antibacterial action of CS and carboxymethylated CS. J. Appl. Polym. Sci., 79 (2001) 1324-35.

Madihally, S. V., Matthew, H. W. T., ; Porous chitosan scafolds for tissue engineering. Biomaterials, 20 (1999) 1133-1142.

Majumdar, M. K., Thiede, M. A., Mosca, J. D., Moorman, M., Gerson, S. L., ; Phenotypic and functional comparison of culture of marrow-derived mesenchymal stem cell(MSCs) and stromal cells. J. Cell. Physiol., 176 (1998) 57-66.

Mao, J. S., Cui, Y. U., Wang, X. H., Sun, Y., Yin, Y. J., Zhao, H. M., ; A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials, 25 (2004) 3973-3981.

Marques, A. P., Reis, R. L., Hunt, J. A., ; The biocompatibility of novel starch-based polymers and composites. Biomaterials, 23 (2002) 1471-1478.

Matsubara, T., Tsutsumi, S., Pan, H., Hiraoka, H., Oda, R., Nishimura, M., Kawaguchi, H., Nakamura, K., and Katoa, Y., ; A new technique to expand human mesenchymal stem cells using basement membrane extracellular matrix. Biochem. Biophys. Res. Commun., 313 (2004) 503-508.

Mi, F. L., Shyu, S. S., Wu, Y. B., Lee, S. T., Shyong, J.Y., Huang, R.N., ; Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials, 22 (2001) 165-173.

Mikhaylova, M., Kim, D. K., Berry, C. C., Zagorodni, A., Toprak, M., Adam, S. G. C., and Muhammed, M., ; BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem. Mater., 16 (2004) 2344-2354.

Mori, M., Sadahira, Y., Awai, M., ; Characteristics of bone marrow fibroblastic colonies (CFU-F) formed in collagen gel. Exp. Hematol., 15 (1987) 1115-1120.

Muzzarelli, R. A. A., ; Chitin, the human body. In : first international conference of the european chitin society. advances in chitin science, Brest, 1995. p. 448-61.

Nishi, C., Nakajima, N., Ikada, Y., ; In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J. Bio. Mat. Res., 29 (1995) 829-834.

O’Briena, F. J., Harleyc, B. A., Yannasc, I. V., Gibson, L. J., ; The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 26 (2005) 433-441.

Onishi, H.; Machida, Y. ; Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials, 20 (1999) 175-182.

Oswald, J., Boxberger, S., Jorgensen, B., Feldmann, S., Ehninger, G., Bornhauser, M., Werner, C., ; Mesenchymal stem cell can be differentiated into endothelial cells in vitro. Stem Cell, 22 (2004) 377-384.

Owen, M., ; Marrow stromal stem cells. J. Cell. Sci. Suppl., 10 (1988) 63.

Pangburn, S. H., Trescony, P. V., Heller, H., ; Lysozyme degradation of
partially deacetylated chitin, its films and hydrogels. Biomaterials, 3 (1982) 105-8.

Peng, Z. G., Hidajat, K., Uddin, M. S., ; Adsorption of bovine serum albumin on nanosized magnetic particles. J. Colloid Interface Sci., 271 (2004) 277-283

Tartaj, P., Morales, M. D. P., Veintemillas-Verdaguer, S., González-carreño T., Serna, C. J., ; The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D : Appl. Phys., 36 (2003) R182-R197.

Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., Marshak, D. R., ; Multilineage potential of adult human mesenchymal stem cells. Science, 284 (1999) 143-7.

Pittenger, M. F., Marshak, D. R., ; Mesenchymal stem cell of human adult bone marrow. Stem cell biology, (2001) P349-373.

Prockop, D. J., ; Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276 (1997) 71-74.

Ren, D., Yi H.,, Wang, W., and Ma, X., ; The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr. Res., 340 (2005) 2403-2410.

Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L., and Verfaillie, C. M., ; Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 98 (2001) 2615-2625.

Safarik, I., Safarikova, M., ; Use of magnetic techniques for the isolation of cells. J. Chromatogr. B., 722 (1999) 33-53.

Sarah, A. Wexler, C. D., Patricia, D. K., Rice, C., Bradley, B., and Jill, M. ; Adult bone marrow is a rich source of human mesenchymal stem cells but umbilical cord and mobilized adult blood are not. Br. J. Haematol., 121 (2003) 368-374.

Sell, S., ; Stem Cells Handbook. 2004 P109.

Shi, C., Zhu, Y., Ran, X., Wang, M., Su, Y., and Cheng, T., ; Therapeutic potential of chitosan and its derivatives in regenerative medicine1. J. Surg. Res., in article press (2006)

Shimizu, K., Ito, A., Honda, H., ; Enhanced cell-seeding into 3D porous scaffolds by use of magnetic nanoparticles. J. Biomed. Mater. Res. B. Appl. Biomater., 77 (2006) 265-72.

Simmons, P. J., Torok-Storb B., ; Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood, 78 (1991) 55-62.

Singha, L., Kumara, L., Ratner, B., ; Generation of porous microcellular 85/15 poly (dl-lactide-co-glycolide) foams for biomedical applications. Biomaterials, 25 (2004) 2611-2617.

Skalak, R., Fox, C. F., ; Tissue engineering. Granlibakken, Lake Tahoe : Proc workshop, New Yark ; Liss ; (1988) p26-29.

Subramanian, A., Lin, H. Y., ; Crosslinked chitosan : Its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation. J. Biomed. Mater. Res., 75A (2005) 742-753.

Takahashi, Y., and Tabata, Y., ; Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J. Biomater. Sci. Polymer Edn., 15 (2004) 41-57.

Tamama, K., Fan, V. H., Gruffith, L. G., Blair, H. C.,Wells, A., ; Epidermal growth factor as candidate for ex vivo expansionof bone marrow-derived mesenchymal stem cells. Stem Cells Express, published online September 8, (2005) 0176.

Tartaj, P., Mar’ıadel, P. M., Sabino, V. V., Teresita, G. C., and Carlos, J. S., ; The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D : Appl. Phys., 36 (2003) 182-197.

Uematsu, K., Hattori, K., Ishimoto, Y., Yamauchi, J., Habata, T., Takakura, Y., Ohgushi, H., Fukuchi, Sato, M., ; Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials, 26 (2005) 4273-4279.

Yoneno, K., Ohno, S., Tanimoto, K., Honda, K., Tanaka, N., Doi, T., Kawata, T., Tanaka, E. Kapila, S., Tanne1, K., ; Multidifferentiation potential of mesenchymal stem cells in three-dimensional collagen gel cultures. J. Biomed. Mater. Res., 75A (2005) 733-741.

Zhao, F., Grayson, W. L., M, T., Bunnell, B., Lu, W. W., ; Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials, 27 (2006) 1859-1867.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊