跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡宗燁
研究生(外文):Tzung-Ye Tsai
論文名稱:合成氮化鋁鋸齒狀奈米線與量產奈米金屬粉體
論文名稱(外文):Synthesis of Serrated AlN Nanorods and Mass Production of Metal Nanoparticles
指導教授:陳建忠陳建忠引用關係
指導教授(外文):Chien-chong Chen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:90
中文關鍵詞:氮化鋁鋸齒狀結構一維線材
外文關鍵詞:AlNserrated structure1-D nanorods
相關次數:
  • 被引用被引用:0
  • 點閱點閱:760
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
第一部份
本論文的研究主題為合成出高純度並且具有高密度分佈的奈米氮化鋁鋸齒狀線材。由於先前的研究已成左漲X成出奈米氮化鋁鋸齒狀線材,因此本研究利用氧化鋁與鋁為反應物,反應氣氛為高純氮,溫度在1350℃持溫6小時進行反應,產物透過XRD繞射分析與SEM、TEM的顯微結構圖可以確認合成出高純度且具有高密度分佈的奈米氮化鋁鋸齒狀線材。鋸齒狀線材直徑約為50 nm。
由實驗結果可以發現,持溫時間為6小時,鋸齒狀線材分佈的密度最高並且鋸齒狀線材之型態也越為完整;而直接由鋁所合成氮化鋁之顯微結構,發現沒有結構完整的鋸齒狀線材,因此產物當中具有高密度分佈的鋸齒狀線材,在本研究的反應條件下必須要有氧化鋁的存在。同時在研究中以不同厚度之反應物進行反應,實驗結果發現相同持溫的條件下,在反應物厚度較薄的實驗中,產物具有較高密度分佈的鋸齒狀線材,原因為反應物厚度不同,導致反應物進行反應時所需擴散時間不同,造成反應物厚度大的實驗之持溫時間相對較短,而使鋸齒狀線材之分佈密度降低。然而可以藉由持溫時間的增長來改善厚度造成的影響。

第二部份
本研究目的為量產奈米金屬粉末,根據先前的研究設計一個連續式反應設備來量產奈米金屬粉末,反應裝置分為兩大主體,第一部份為預熱區,以加熱帶加熱使反應液中的水分移去,第二部分為反應區,以高溫爐加熱使反應進行生成奈米金屬粉體。
研究中在批次合成奈米金屬粉末的實驗裡,利用簡易的設備在大氣下快速(<10分鐘)合成奈米金屬粒子粉末,包括鎳、鈷、銀、銅金屬。
而在連續式的反應中,同樣也以簡單的氣氛控制(氬氣)來量產奈米鎳金屬粒子,不同於批次實驗的地方為反應設定溫度,批次實驗溫度範圍為450 ~ 550℃。由於連續式反應進行中反應液持續在進料,因此以900℃作為反應區的設定溫度,然而在實驗設計中加入了調整反應區角度的裝置,目的為收集產物於收集瓶內,目前從實驗結果以傾斜角10°最適合反應。
本研究以連續式反應設備來量產奈米鎳金屬粉末,若連續式反應連續操作一天,將可獲得約半公斤的產物,這對於量產奈米金屬粉末是非常大的突破。
Abstrate
First Part
This research was studied on synthesis of pure and high distributed serrated aluminum nitride(AlN) nanorods. Due to previous researches, this studies used alumina and aluminum to react at 1350℃ in N2. We attempted to synthesis high distributed serrated aluminum nitride(AlN) nanorods by changing the places of reactants and sustentation heating time.
In our studies, we can find more high distributed serrated aluminum nitride(AlN) nanorods and the perfect serrated morphology when the sustentation heating time is longer. The two different places of reactants include alumina boat and alumina plate both can synthesis high distributed serrated aluminum nitride(AlN) nanorods. We attempt to discuss that the thickness of reactants result in the difference of diffusion time. This may cause the distribution of serrated aluminum nitride(AlN) nanorods. In our system also find perfect serrated aluminum nitride(AlN) nanorods may not exist without alumina.

Second Part
This research combines the experiences of synthesis of metal nanoparticles with the experiences low-temperature combustion. We design a continuing reaction equipment to mass production of meta nanoparticles. This equipment divides into two parts. The first part is the preheating zoon in order to move water content of reactant solvents by heating tape. The second part is the reacting zoon. The purpose is synthesis of metal nanoparticles by tube furnace..
In batch experiment, we use simple equipment to synthesis metal nanoparticles include Ni, Co, Ag, Cu in atmosphere. Similarly we use the same method to synthesis Ni nanoparticles in our continuing reaction equipment. The most difference is the reaction temperature. Because the reactant precursors flow all the time in our continuing system, the reaction temperature must be higer. However we also use different parameters such as the reacting zoon angle and reaction temperature.
We have already successfully used this continuing reaction equipment to synthesis metal nanoparticles. This is significant improvement in mass production metal nanoparticles.
目錄
致謝…………………………………………………………..………….Ⅰ
中文、英文摘要………………………………………………………...Ⅱ
目錄………………………………………………………………..……..Ⅵ
圖目錄…………………………………………………………...…..…...Ⅹ
表目錄……………………………………………………………..…...ⅩⅢ
第一部份
1.簡介………………………………………………………………..…….1
1.1氮化鋁特性……………………………………………………..……1
1.2氮化鋁的應用………………………………………………..………1
1.3奈米材料特性與應用…………………………………………..……3
1.4一維奈米氮化鋁線材…………………………………………..……4
1.5研究動機……………………………………………………..………5
2.文獻回顧…………………………………………………………..….…6
2.1氮化鋁一維線材 ……………………………………………..……..6
2.1.1氮化鋁奈米線………………………………………………..….…6
2.1.2氮化鋁奈米管………………………………………………..…….7
2.1.3氮化鋁奈米帶………………………………………………..…….8
2.1.4氮化鋁奈米錐、針…………………………………………..….…9
2.1.5氮化鋁奈米棒………………………………………………..……11
2.2鋸齒狀氮化鋁一維線材的製備方法………..……………..……….13
2.2.1直接氮化鋁源法…………………………………………..………13
2.2.2碳熱還原氮化法………………………………………………..…14
2.2.3氣-固法…………………………………………...……….….……16
3.實驗設備…………………………………………………………..……17
3.1儀器設備………………………………………..……………..…….17
3.2藥品………………………………………..……………….….…….20
3.3實驗步驟………………………………………..……………..…….21
3.3.1製備氮化鋁鋸齒狀線材之實驗步驟………………………..…....21
3.3.2探討厚度對於反應的影響…………………………………..……21
3.4實驗裝置圖………………………………………..…………..….....22
4.結果與討論……………………………………………………….…….23
4.1.1製備氮化鋁鋸齒狀線材………………………………………......23
4.1.2改變反應物厚度製備氮化鋁鋸齒狀線材………...……………...31
4.2氧化鋁對於鋸齒狀線材影響…………………………………....….43
4.3持溫時間對鋸齒狀線材影響……………………………...…….….45
4.4反應機制………………………………………………………....….46
4.5厚度對鋸齒狀線材影響…………………………………...…….….47
5.結論…………………………………………………………………….53
6.參考文獻……………………………………………………………….54
第二部分
7.簡介……………………………………………………………….……57
7.1奈米金屬的特性……………………………………………….…...57
7.2低溫燃燒合成法……………………………………………….…...57
7.3研究動機……………………………………………………….…...58
8.文獻回顧………………………………………………………….……59
8.1奈米金屬粒子………………………………………..……….…….59
8.2奈米鎳金屬粒子………………………………………………....…59
8.2.1鹽類還原法………………………………………………….……59
8.2.2電化學還原法…………………………………………….………61
8.2.3超音波噴霧還原法……………………………………….………61
8.2.4微乳液還原法…………………………………...……….….……62
8.2.5其他…………………………………...………………….….……63
9.實驗設備…………………………………………………………….…64
9.1儀器設備………………………………………..…………….…….64
9.2藥品………………………………………..………………….…….64
9.3實驗步驟………………………………………..……………….….65
9.3.1批次反應實驗步驟………………………………………….……65
9.3.2連續式反應實驗步驟…………………………………………….66
9.4實驗裝置………………………………………..…………….…….67
10.結果與討論…………………………………………………………...69
10.1低溫燃燒法的反應機制…………………………………..…...….69
10.2批次實驗合成奈米金屬…….………………………………….…69
10.2.1奈米鎳金屬粒子的合成………………………………………...69
10.2.2奈米銀金屬粒子的合成………………………………..…….....72
10.2.3奈米鈷、銅金屬粒子的合成…………………………………...73
10.3連續式反應合成奈米金屬粉末……………………………….….75
10.3.1量產奈米金屬粒子的構想……………………………………...75
10.3.2連續式量產奈米鎳金屬粒子………………………………...…76
10.3.3系統進料的量對於產率的影響………………………………...79
10.3.4溫度對反應的影響………………………………………...……79
10.3.5反應區傾斜角對反應的影響…………………………………...82
10.3.6反應液停滯時間對反應的影響………………………………...84
11.結論…………………………………………………………………...86
12.未來展望…………………………………………………………..….87
13.參考文獻……………………………………………………………...88
First Part
[1]Z. C. Jou, A. V. Virkar,“High-Temperature Creep and Cavitation of Polycrystalline Aluminum Nitride ”, J. Am. Ceram. Soc. 73, 1928 (1990).
[2]H. S. Nalwa, Hanbook of Nanostructured Materials and Nanotechnology, (Academic Press, New York, 2000).
[3]V. M. Shalaev, M. Moskovits, Materials: Clusters, Composites, and Thin Films, (American Chemical Society, Washington, D. C. 1997).
[4]M. C. Benjamin, C. Wang, and R. F. Davis,“Observation of a negative electron affinity for heteroepitaxial AlN on (6H)-SiC(0001) ”, Appl. Phys. Lett. 64, 3288 (1994).
[5]Y. Zhang, J. Liu, R. He, Q. Zhang, X. Zhang, and J. Zhu,“Synthesis of Aluminum Nitride Nanowires from Carbon Nanotubes ”, Chem. Mater.13. 3899 (2001).
[6]Q. Wu, Z. Hu, X. Wang, Y. Lu, K. Huo, S. Deng, N. Xu, B. Shen, R. Zang, and Y. Chen,“Extended vapor–liquid–solid growth and field emission properties of aluminium nitride nanowires ”, J. Mater. Chem. 13. 2024(2003).
[7]Q. Wu, Z. Hu, X. Wang, Y. Hu, Y. Tian and Y. Chen,“A simple route to aligned AlN nanowires ” , Diam. Relat. Mater.13.38(2004).
[8]C. C. Tang, S. S. Fan, M. L. D. L. Chapelle, and P. Li,“Silica-assisted catalytic growth of oxide and nitride nanowires ”, Chem. Phys. Lett. 333, 12 (2001).
[9]V. N. Tondare, C. Balasubramanian, S. V. Shende, D. S. Joag, V. P. Godbole, S. V. Bhoraskar, and M. Bhadbhade,“Field emission from open ended aluminum nitride nanotubes ”, Appl. Phys. Lett. 80, 4813 (2002).
[10]Q. Wu, Z. Hu, X. Wang, Y. Lu, X. L. Chen, Y. Chen, and K. H. Chen, “Synthesis and Characterization of Faceted Hexagonal Aluminum Nitride Nanotubes ”, J. Am. Chem. Soc. 125, 10176 (2003).
[11]Q. Wu, Z. Hu, X. Wang, and Y. Chen,“Synthesis and Optical Characterization of Aluminum Nitride Nanobelts ”, J. Phys. Chem. B.. 107, 9726 (2003).
[12]C. Liu, Z. Hu, Q. Wu, X. Wang, Y. Chen, H. Sang, J. Zhu, S. Deng, and N. Xu,“Vapor-Solid Growth and Characterization of Aluminum Nitride Nanocones ”, J. Am. Chem. Soc. 127, 1318 (2005).
[13]C. Liu, Z. Hu, Q. Wu, X. Wang, Y. Chen, W. Lin, H. Sang, S. Deng and N. Xu,“Synthesis and field emission properties of aluminum nitride nanocones ”, Appl. Surf. Sci. 251, 220 (2005).
[14]S. C. Shi, C. F. Chen, S. Chattopadhyay, Z. H. Lan, K. H. Chen, and L. C. Chen,“Growth of Single-Crystalline Wurtzite Aluminum Nitride Nanotips with a Self-Selective Apex Angle ”, Adv. Funct. Mater. 15, 781 (2005).
[15]S. C. Shi, C. F. Chen, S. Chattopadhyay,“Field emission from quasi-aligned aluminum nitride nanotips”, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 87, 73109-1 (2005).
[16]C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen,“Generally Applicable Self-Masked Dry Etching Technique for Nanotip Array Fabrication”, Nano. Lett. 4, 471 (2004)
[17]J. H. He, R. Yang, Y. L.Chueh, L. J. Chou, L. J, Chen. Lin, and Z. L. Wang,“Aligned AlN Nanorods with Multi-tipped Surfaces - Growth, Field-Emission, and Cathodoluminescence Properties”, Adv. Mater. 18, 650 (2006).
[18]S. Chattopadhyay, S. C. Shi, Z. H. Lan, C. F. Chen, K. H. Chen, and L. C. Chen,“Molecular Sensing with Ultrafine Silver Crystals on Hexagonal Aluminum Nitride Nanorod Templates”, J. Am. Chem. Soc. 127, 2820 (2005).
[19]S. C. Shi, S. Chattopadhyay,“Structural evolution of AlN nano-structures: Nanotips and nanorods ”, C. F. Chen, K. H. Chen, and L. C. Chen, Chem. Phys. Lett. 418, 152 (2006).
[20] 莊瑞誠,微/奈米尺度氮化鋁之合成、機制與理論探討,中正大學,博士論文 (2005)。
[21]S. Iijima,“Helical microtubules of graphitic carbon”, Nature.354, 56 (1991)
[22]J. A. Habber, P. C. Gibbon, and W. E. Buhro,“Morphologically Selective Synthesis of Nanocrystalline Aluminum Nitride”, Chem. Mater. 10, 4062 (1998).
[23]P. G. Caceres, H. K. Schmid,“Morphology and Crystallography of Aluminum Nitride Whiskers ”, J. Am. Ceram. Soc. 77, 977 (1994).
[24]W. S. Jung, T. J. Lee, and B. K. Min,“Growth mechanism of aluminum nitride whiskers prepared from a (glutarato)(hydroxo)aluminum(III) complex ”, Mater. Lett. 57, 4237 (2003).
[26] T. Xie, Y. Lin, G. Wu, X. Yuan, Z. Jiang, C. Ye, G. Meng, and L. Zhang, “AlN serrated nanoribbons synthesized by chloride assisted vapor–solid route ”, Inorg. Chen. Commun. 7, 545 (2004).

Second Part
[1] Y. Sun and Y. Xia,“Shape-Controlled Synthesis of Gold and Silver Nanoparticles”, Science. 298. 2176(2002).
[2]G. B. Khomutov and S. P. Gubin,“Interfacial synthesis of noble metal nanoparticles ”, Mater. Sci. Eng. 22. 141(2002).
[3]H. Itoh, K. Naka, and Y. Chujo,“Synthesis of Gold Nanoparticles Modified with Ionic Liquid Based on the Imidazolium Cation ”, J. Am. Chem. Soc. 126. 3026(2004).
[4]K. C. Chou and K. C. Huang,“Studies on the Chemical Synthesis of Nanosized Nickel Powder and its Stability ”, J. Nanopart. Res. 3. 127(2001).
[5]N.Cordente, M. Respaud, F. Senocq, M. J. Casanove, C Amiens and B. Chaudret,“Synthesis and Magnetic Properties of Nickel Nanorods”, Nano Lett. 1. 565(2001).
[6]M. P. Zach and R. M. Penner,“New Trends in Colloidal Liquid Crystals Based on Mineral Moieties”, Adv. Mater. 12. 12(2000).
[7]B. Xia. and I. W. C. Lenggorgo,“Preparation of Ni particles by ultrasonic spray pyrolysis of NiCl2•6H2O precursor containing ammonia ”, J. Mater. Sci. 36. 1701 (2001).
[8]D. W. Chen and S. H. Wu,“Synthesis of Nickel Nanoparticles in Water-in-Oil Microemulsions”, Chem. Mater. 12. 1354(2000).
[9]I. Bica, “Nanoparticle production by plasma ”, Mater. Sci. Eng.B 68. 5(1999).
[10]B. Xia, I. W. Lenggoro, and K. Okuyama,“Preparation of Nickel Powders by Spray Pyrolysis of Nickel Formate ”, J. Am. Ceram. Soc. 84. 1425(2001).
[11]A. G. Nasibulin, P. P. Ahonen, O. Richard, “Copper and Copper Oxide Nanoparticle Formation by Chemical Vapor Nucleation From Copper (II) Acetylacetonate ”, E. I. Kauppinen and I. S. Altman, J. Nanopart. Res. 3. 383(2001).
[12] 郭清癸,黃俊傑,牟中原,物理雙月刊,23卷6期,614(2001)。
[13]H. A. Dhas and K. C. Patil,“Combustion Synthesis and Properties of Fine Particle Spinel Manganites”, J. Solid State Chem.102. 440 (1993).
[14]D. A. Fumo, M. R. Morelli and A. M. Segadeas,“Combustion synthesis of calcium aluminates”, Mater. Res. Bull. 31. 1243(1996).
[15]S. Ekambaram and K. C. Patil,“Rapid synthesis and properties of FeVO4, AlVO4, YVO4 and Eu3+-doped YVO4”, J. Alloys and Comp. 217. 104(1995).
[16]T. V. Anuradha, S. Ranganathan, T. Mimani and K. C. Patil, “Combustion synthesis of nanostructured barium titanate”, Scripta Mater. 44. 2237(2001).
[17]S. T. Aruna, S. Ghosh and K. C. Patil,“Combustion synthesis and properties of Ce1−xPrxO2−δ red ceramic pigments”, Inter. J. Inorg. Mater. 3. 387(2001).
[18]S. Bhaduri and S. B. Bhaduri,“Phase and microstructural evolution of heat treated nanocrystalline powders in Al2O3-MgO binary system”,Nanostruct. Mater. 11. 469(1999).
[19]S. Bhaduri and S. B. Bhaduri,“Enhanced low temperature toughness of Al2O3-ZrO2 nano/nano composites”, Nanostruct. Mater. 8. 755(1997).
[20]N. A. Dhas and K. C. Patil,“Properties of magnesia-stabilized zirconia powders prepared by a combustion route”, J. Mater. Sci. Lett. 12. 1844(1993).
[21]S. Ekambaram and K. C. Patil,“Rapid synthesis and properties of FeVO4, AlVO4, YVO4 and Eu3+-doped YVO4”, J. Alloys and Comp. 217. 104(1995).
[22]R. G. Chandran and K. C. Patil,“Combustion synthesis of rare earth cuprates ”, Mat. Res. Bull. 27. 147(1992).
[23] 方建智,國立中正大學化學工程研究所,碩士論文,(2002)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文