跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 10:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王瀚毅
研究生(外文):Han-yi Wang
論文名稱:以穿透式電子顯微鏡之電子束來同步引發奈米碳管中之化學反應
論文名稱(外文):In-Situ Reactions within Carbon Nanotubes by Irradiation of TEM e-beam
指導教授:陳建忠陳建忠引用關係陳建忠陳建忠引用關係
指導教授(外文):Chien-chong ChenChien-chong Chen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:145
中文關鍵詞:奈米碳管奈米碳管穿透式電子顯微鏡原位法膨脹形變彎曲形變穿透式電子顯微鏡原位法膨脹形變彎曲形變
外文關鍵詞:bendbendcarbon nanotubeTEM in situdilationcarbon nanotubeTEM in situdilation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將穿透式電子顯微鏡原位法(TEM in situ method)和奈米碳管的毛細現象與低溫燃燒合成法結合,低溫燃燒的反應液有金屬硝酸鹽類和卡巴胺的水溶液以固定的比例配製,利用毛細現象使反應液吸入奈米碳管中,並以TEM的電子束來連續照射加熱,啟動奈米碳管中之奈米級化學反應。反應時所釋放的大量氣體,會造成碳管內奈米級侷限空間之壓力巨幅上升。由實驗結果發現,分為碳管與奈米銀粒子皆有釵h形變現象。首先,碳管的形變隨著填充率的遞減,依次會有膨脹、彎曲、碳管保持原狀及碳管內壁緊縮的現象。由簡易的理論推算與配合文獻資訊,可知當反應產生的氣壓高於奈米碳管的徑向承受壓力(5.3GPa)時,碳管本身會膨脹數倍;反之,若產生的氣體壓力小於5.3GPa時,奈米碳管因內部氣壓產生動態之彎曲、碳管保持原狀及碳管內壁緊縮的現象。在碳管膨脹的部份,經由高解析的TEM影像、電子繞射及EDX分析後,可知在碳管經電子束連續照射後,其管壁可分為內外兩層,外層為結晶性差的石墨層;內層為鑽石層。此外,還觀察到一些有趣的現象,如:單壁碳管束因電子束照射而斷裂。
而奈米銀粒子的形變現象,如:在碳管內因化學反應產生,可觀察到奈米金屬粒子漸漸生成的情況;在碳管內之銀粒子因電子束連續照射,而有從大漸漸縮小的趨勢,此處可能可以提供為何在碳管內的金屬填充率一直無法提高的直接證據;以及看到碳管內的銀粒子經電子束照射而結晶性變佳;此外,還觀察到碳管外側之奈米銀粒子延碳管管壁做徑向圓弧運動的有趣現象。
This research tried to initiate a chemical reaction inside a carbon nanotube (CNT) in situ by electron beam of transmission electron microscope (TEM) heating. Sample was prepared by capillarity of liquid reactant (metal nitrates, carbohydrazide, and water) into a CNT. The high-energy electron beam of TEM was used to initiate a chemical reaction inside a CNT and monitor the process of the reaction. In this reaction, there is a large amount of gas, and water vapor released, and it makes CNTs and sliver nanoparticles deform. Frist, by the experiment results and the sample deduction, it can be known the relation of the pressure of gas released to filling efficiency, and can be proven that the CNT would dilate a lot of times as the pressure is bigger than the radial compressive elastic modulus of CNT (5.3GPa). On the other hand, the CNT would bend, keep invariable, and the inner wall of the CNT would close in turn, as the pressure smaller than the radial compressive elastic modulus of CNT decreases progressively. In the aspect of CNT dilation, it is known that the wall of the CNT is divided into two parts through electron beam irradation. Outer side of the wall of the CNT is graphite of bad crystallinity; inner side of the wall of the CNT is diamond by the analysis of HRTEM images, SAED pattern, and EDX. Then, there is an interesting phenomenon such as that single-wall carbon nanotube bundles can be cut by the e-beam irradiation.
Finally, the sliver nanoparticles (product of reaction) were found to shrink during the reaction of bending which can prove an important fact that it is very difficult to completely fill a CNT. And we can see their crystalline would be better with irradiate time. Also, sliver nanoparticles outside CNT can move around CNT outer wall by the e-beam irradiation.
致謝………………………………………………………………………i
中文摘要…………………………………………………………………ii
英文摘要………………………………………………………………iii
目錄………………………………………………………………………iv
圖目錄……………………………………………………………………vi
表目錄…………………………………………………………………… x
第1章 簡介…………………………………………………………1
1.1 奈米碳管……………………………………………………1
1.2 過渡元素-銀(Sliver)…………………………………2
第2章 文獻回顧……………………………………………………3
2.1 在TEM內作反應並觀察物質合成或變化的過程………3
2.2 以TEM電子束連續照射對物質外觀加工………………10
2.3 以TEM電子束連續照射使物質轉變相態………………28
2.4 以TEM電子束連續照射對物質內的填充物造成的變化…………………………………………………………35
第3章 實驗動機與研究內容………………………………………45
3.1 實驗動機…………………………………………………45
3.2 研究內容…………………………………………………47
第4章 實驗設備……………………………………………………48
4.1 儀器設備…………………………………………………48
4.2 藥品名稱…………………………………………………51
第5章 實驗方法……………………………………………………54
5.1 實驗流程圖………………………………………………54
5.2 實驗步驟……………………………………………………55
第6章 結果與討論…………………………………………………57
6.1 實驗結果分類………………………………………………57
6.1.1 奈米碳管的膨脹現象(I-1 ~ I-14)…………………57
6.1.2 奈米碳管的彎曲現象(II-1 ~ II-2)……………………82
6.1.3 奈米碳管的保持原狀之現象(III-1)…………………86
6.1.4 奈米碳管的管內壁緊縮之現象(IV-1)………………88
6.1.5 奈米金屬顆粒延碳管管壁之徑向運動的現象(V-1)…90
6.1.6 單壁奈米碳管束被電子束切割斷裂之現象(V-2)…91
6.1.7 奈米碳管內填充顆粒隨電子束照射粒徑縮小之現象(V-3~V-4)……………………………………………93
6.1.8 奈米碳管內填充顆粒隨電子束照射結晶性變佳之現象(V-5~V-6)……………………………………96
6.2 理論壓力計算…………………………………………….101
6.3 實驗結果整理……………………………………………106
6.4 理論計算與實驗結果之作圖討論………………………116
第7章 結論………………………………………………………118
第8章 未來展望…………………………………………………122
第9章 參考文獻…………………………………………………123
附錄一 TEM in situ文獻比較……………………………………127
附錄二 圖6.7 H之dspacing度量數據……………………………135
[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56.
[2] W.A. de Heer, A. Chatelain, and D. Ugart, A Carbon Nanotube Field-Emission Electron Source, Sicence 270 (1995) 1179.
[3] Y. Saito, A Hamaguchi, K. Hata, K. Uchida, Y. Tasaka, F.Ikazaki, M.
Yumura, A. Kasuya, and Y. Nishina, Conical beams from open nanotubes, Nature 389 (1997) 554.
[4] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy, Nature 384 (1996) 147.
[5] T. Rueckes, K. Kim, E. Joselevuch, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing, Science 289 (2000) 94.
[6] A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Logic Circuits with Carbon Nanotube Transistors, Science 294 (2001) 1317.
[7] C. Liu, Y. Y. Fan, M. Liu, H.T. Cong, H. M. Cheng, and M. S. Dresselhaus, Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature, Science 286 (1999) 1127.
[8] X. Gong, J. Liu, R. D. Baskaran, and J. S. Young, Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites, Chem. Mater. 12 (2000) 1049.
[9] 陳力俊等著;材料電子顯微鏡學,行政院國科會精儀中心發行,2003年
[10] L. Reimer, Transmission Electron Microscopy, Springer-Verlag Press, Berlin Heidel berg, 1989.
[11] D. B. Williams, Transmission Electron Microscopy, C. B. Carter, Plenum Press, New York and London, 1996.
[12] P. M. Ajayan, L. D. Marks, Experimental Evidence for Quasimelting in Small Particles, Phys. Rev. Lett. 60 (1989) 279.
[13] T. Ichihashi, M. Ishida, Y. Ochiai, J. I. Fujita, In situ observation of carbon-nanopillar tubulization process, J. Vac. Sci. Technol. B 22 (2004) 3221.
[14] S. Iijima, P. M. Ajayan, Substrate and size effects on the coalescence of small particles, J. Appl. Phys. 70 (1991) 5138.
[15] L. M. Peng, Z. L. Zhang, Z. Q. Xue, Q. D. Wu, Z. N. Gu, D. G. Pettifor, Stability of Carbon Nanotubes: How Small Can They Be?, Phys. Rev. Lett. 85 (2000) 3249.
[16] C. M. Li, I. M. Robertson, M. L. Jenkins, J. L. Hutchison, R. C. Doole, In situ TEM observation of the nucleation and growth of silver oxide nanoparticles, Micron. 36 (2005) 9.
[17] L. F. Fonseca, O. Resto, F. Sola, Electron-beam-induced growth of silicon multibranched nanostructures, Appl. Phys. Lett. 87 (2005) 113111.
[18] N. G. Chopra, F. M. Ross, A. Zettl, Collapsing carbon nanotubes with an electron beam, Chem. Phys. Lett. 256 (1996) 241.
[19] V. H. Crespi, N. G. Chopra, M. L. Cohen, A. Zettl, S. G. Louie, Anisotropic electron-beam damage and the collapse of carbon nanotubes, Phys. Rev. B. 54 (1996) 5927.
[20] P. M. Ajayan, V. Ravikumar, J. C. Charlier, Surface Reconstructions and Dimensional Changes in Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 81 (1998) 1437.
[21] W. H. Knechtel, G. S. Dusberg, W. J. Blau, E. Hernandez, A, Rubio, Reversible bending of carbon nanotubes using a transmission electron microscope, Appl. Phys. Lett. 73 (1998) 1961.
[22] M. Terrones, H. Terrones, F. Banhart, J. C. Charlier, P. M. Ajayan, Coalescence of Single-Walled Carbon Nanotubes, Science 288 (2000) 1226.
[23] J. Cumings, P.G. Collins, A. Zettl, Peeling and sharpening multiwall nanotubes, Nature 406 (2000) 586.
[24] J. Cumings, A. Zettl, Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes, Science 289 (2000) 602.
[25] G. L. Hwang, and K. C. Hwang, Breakage, Fusion, and Healing of Carbon Nanotubes, Nano Lett. 1 (2001) 435.
[26] M. Terrones, F. Banhart, N. Grobert, J. C. Charlier, H. Terrones, P. M. Ajayan, Molecular Junctions by Joining Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 89 (2002) 075505.
[27] J. Li, F. Banhart, The Engineering of Hot Carbon Nanotubes with a Focused Electron Beam, Nano. Lett. 4 (2004) 1143.
[28] M. Yoon, S. Han, G. Kim, S. B. Lee, S. Berber, E. Osawa, J. Ihm, M. Terrones, F. Banhart, J. C. Charlier, N. Grobert, H. Terrones, P. M. Ajayan, D. Tomanek, Zipper Mechanism of Nanotube Fusion: Theory and Experiment, Phys. Rev. Lett. 92 (2004) 075504.
[29] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers, Nature 430 (2004) 870.
[30] L. T. Sun, J. L. Gong, Z. X. Wang, D. Z. Zhu, J. G. Hu, R. R. Lu, Z. Y. Zhu, Irradiation-induced phase transformations in carbon nanostructures, Nucl. Instr. and Meth. in Phys. Res. B 228 (2005) 26.
[31] L. Guan, Z. Shi, Z. Gu, Exfoliation of single-walled carbon nanotube bundles under electron beam irradiation, Carbon 43 (2005) 1084.
[32] F. Banhart, J. X. Li, A. V. Krasheninnikov, Carbon nanotubes under electron irradiation: Stability of the tubes and their action as pipes for atom transport, Phys. Rev. B 71 (2005) 241408.
[33] H. W. Zandbergen, R. J. H. A. van Duuren, P. F. A. Alkemade, G. Lientschnig, O. Vasquez, C. Dekker, F. D. Tichelaar, Sculpting Nanoelectrodes with a Transmission Electron Beam for lectrical and Geometrical haracterization of Nanoparticles, Nano Lett. 5 (2005) 549.
[34] K. M. Youssef, R. O. Scattergood, K. L. Murty, J. A. Horton, C. C. Koch, Ultrahigh strength and high ductility of bulk nanocrystalline copper, Appl. Phys. Lett. 87 (2005) 091904.
[35] B. C. Regan, S. Aloni, R. O. Ritchie, U. Dahmen, A. Zettl, Carbon nanotubes as nanoscale mass conveyors, Nature 428 (2004) 924.
[36] K. Jensen, W. Mickelson, W. Han, A. Zettl, Current-controlled nanotube growth and zone refinement, Appl. Phys. Lett. 86 (2005) 173107.
[37] F. Banhart, The transformation of graphitic onions to diamond under electron irradiation, J. Appl. Phys. 81 (1997) 3440.
[38] M. Zaiser, F. Banhart, Radiation-Induced Transformation of Graphite to Diamond, Phys. Rev. Lett. 79 (1997) 3680.
[39] Y. Lyutovich, F. Banhart, Low-pressure transformation of graphite to diamond under irradiation, Appl. Phys. Lett. 74 (1999) 659.
[40] F. Banhart, J. C. Charlier, P. M. Ajayan, Dynamic Behavior of Nickel Atoms in Graphitic Networks, Phys. Rev. Lett. 84 (2000) 686.
[41] J. G. Lee, H. Mori, In situ HREM study on the structural instability of isolated nanometre-sized alloy particles in the Sn-Bi system, J. Elect. Micro. 52 (2003) 57.
[42] F. Banhart, E. Hernandez, M. Terrones, Extreme Superheating and Supercooling of Encapsulated Metals in Fullerenelike Shells, Phys. Rev. Lett. 90 (2003) 185502.
[43] J. Hiraki, H. Mori, E. Taguchi, H. Yasuda, H.Kinoshita, N. Ohmae, Transformation of diamond nanoparticles into onion-like carbon by electron irradiation studied directly inside an ultrahigh-vacuum transmission electron microscope, Appl. Phys. Lett. 86 (2005) 223101.
[44] D. Ugarte, A. Chatelain, W. A. de. Heer, Nanocapillarity and Chemistry in Carbon Nanotubes, Nature 274 (1996) 1897.
[45] G. Brown, S. R. Bailey, J. Sloan, C. Xu, S. Friedrichs, E. Flahaut, K. S. Coleman, J. L. Hutchison, R. E. D. Borkowski, M. L. H. Green, Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes, Chem. Comm. (2001) 845.
[46] F. Banhart, Ph. Redlich, P. M. Ajayan, The migration of metal atoms through carbon onions, Chem. Phys. Lett. 292 (1998) 554.
[47] Y. Gogotsi, J. A. Libera, A. G. Yazicioglu, C. M. Megaridis, In situmultiphase fluid experiments in hydrothermal carbon nanotubes, Appl. Phys. Lett. 79 (2001) 1021.
[48] Y. Gogotsi, N. Naguib, J. A. Libera, In situ chemical experiments in carbon nanotubes, Chem. Phys. Lett. 365 (2002) 354.
[49] N. Naguib, H. Ye, Y. Gogotsi, A. G. Yazicioglu, C. M. Megaridis, M. Yoshimuro, Observation of Water Confined in Nanometer Channels of Closed Carbon Nanotubes, Nano Lett. 4 (2004) 2237.
[50] W. Q. Han, A Zettl, Nanocrystal cleaving, Appl. Phys. Lett. 84 (2004) 2644.
[51] B. Y. Sun, Y. Sato, K. Suenaga, T. Okazaki, N. Kishi, T. Sugai, S. Bandow, S. Iijima, H. Shinohara, Entrapping of Exohedral Metallofullerenes in Carbon Nanotubes: (CsC60)n@SWNT Nano-Peapods, J. Am. Chem. Soc. 127 (2005) 17972.
[52] P. J. F. Harris, Carbon Nanotubes And Related Structures, Cambridge University Press, United Kingdom, 1999.
[53] 上海市奈米科技與發展促進中心, http://www.snpc.org.cn/techLessonDetail.asp?chapterList_id=55
[54] W. Shen, B. Jiang, B. S. Han, S. S. Xie, Investigation of the Radial Compression of Carbon Nanotubes with a Scanning Probe Microscope, Phys. Rev. Lett. 84 (2000) 3634.
[55] A. Yasuda, N. Kawase, F. Banhart, W. Mizutani, T. Shimizu, H. Tokumoto, Graphitization Mechanism during the Carbon-Nanotube Formation Based on the In-Situ HRTEM Observation, J. Phys. Chem. B 106 (2002) 1849.
[56] C. X. Wang, Y. H. Yang, N. S. Xu, and G. W. Yang, Thermodynamics of Diamond Nucleation on the Nanoscale, J. AM. CHEM. SOC. 126 (2004) 11303.
[57] Atlas of Stress-Strain Curves, Howard E. Boyer, ASM INTERNATION Press, 1987.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top