|
[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56. [2] W.A. de Heer, A. Chatelain, and D. Ugart, A Carbon Nanotube Field-Emission Electron Source, Sicence 270 (1995) 1179. [3] Y. Saito, A Hamaguchi, K. Hata, K. Uchida, Y. Tasaka, F.Ikazaki, M. Yumura, A. Kasuya, and Y. Nishina, Conical beams from open nanotubes, Nature 389 (1997) 554. [4] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy, Nature 384 (1996) 147. [5] T. Rueckes, K. Kim, E. Joselevuch, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing, Science 289 (2000) 94. [6] A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Logic Circuits with Carbon Nanotube Transistors, Science 294 (2001) 1317. [7] C. Liu, Y. Y. Fan, M. Liu, H.T. Cong, H. M. Cheng, and M. S. Dresselhaus, Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature, Science 286 (1999) 1127. [8] X. Gong, J. Liu, R. D. Baskaran, and J. S. Young, Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites, Chem. Mater. 12 (2000) 1049. [9] 陳力俊等著;材料電子顯微鏡學,行政院國科會精儀中心發行,2003年 [10] L. Reimer, Transmission Electron Microscopy, Springer-Verlag Press, Berlin Heidel berg, 1989. [11] D. B. Williams, Transmission Electron Microscopy, C. B. Carter, Plenum Press, New York and London, 1996. [12] P. M. Ajayan, L. D. Marks, Experimental Evidence for Quasimelting in Small Particles, Phys. Rev. Lett. 60 (1989) 279. [13] T. Ichihashi, M. Ishida, Y. Ochiai, J. I. Fujita, In situ observation of carbon-nanopillar tubulization process, J. Vac. Sci. Technol. B 22 (2004) 3221. [14] S. Iijima, P. M. Ajayan, Substrate and size effects on the coalescence of small particles, J. Appl. Phys. 70 (1991) 5138. [15] L. M. Peng, Z. L. Zhang, Z. Q. Xue, Q. D. Wu, Z. N. Gu, D. G. Pettifor, Stability of Carbon Nanotubes: How Small Can They Be?, Phys. Rev. Lett. 85 (2000) 3249. [16] C. M. Li, I. M. Robertson, M. L. Jenkins, J. L. Hutchison, R. C. Doole, In situ TEM observation of the nucleation and growth of silver oxide nanoparticles, Micron. 36 (2005) 9. [17] L. F. Fonseca, O. Resto, F. Sola, Electron-beam-induced growth of silicon multibranched nanostructures, Appl. Phys. Lett. 87 (2005) 113111. [18] N. G. Chopra, F. M. Ross, A. Zettl, Collapsing carbon nanotubes with an electron beam, Chem. Phys. Lett. 256 (1996) 241. [19] V. H. Crespi, N. G. Chopra, M. L. Cohen, A. Zettl, S. G. Louie, Anisotropic electron-beam damage and the collapse of carbon nanotubes, Phys. Rev. B. 54 (1996) 5927. [20] P. M. Ajayan, V. Ravikumar, J. C. Charlier, Surface Reconstructions and Dimensional Changes in Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 81 (1998) 1437. [21] W. H. Knechtel, G. S. Dusberg, W. J. Blau, E. Hernandez, A, Rubio, Reversible bending of carbon nanotubes using a transmission electron microscope, Appl. Phys. Lett. 73 (1998) 1961. [22] M. Terrones, H. Terrones, F. Banhart, J. C. Charlier, P. M. Ajayan, Coalescence of Single-Walled Carbon Nanotubes, Science 288 (2000) 1226. [23] J. Cumings, P.G. Collins, A. Zettl, Peeling and sharpening multiwall nanotubes, Nature 406 (2000) 586. [24] J. Cumings, A. Zettl, Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes, Science 289 (2000) 602. [25] G. L. Hwang, and K. C. Hwang, Breakage, Fusion, and Healing of Carbon Nanotubes, Nano Lett. 1 (2001) 435. [26] M. Terrones, F. Banhart, N. Grobert, J. C. Charlier, H. Terrones, P. M. Ajayan, Molecular Junctions by Joining Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 89 (2002) 075505. [27] J. Li, F. Banhart, The Engineering of Hot Carbon Nanotubes with a Focused Electron Beam, Nano. Lett. 4 (2004) 1143. [28] M. Yoon, S. Han, G. Kim, S. B. Lee, S. Berber, E. Osawa, J. Ihm, M. Terrones, F. Banhart, J. C. Charlier, N. Grobert, H. Terrones, P. M. Ajayan, D. Tomanek, Zipper Mechanism of Nanotube Fusion: Theory and Experiment, Phys. Rev. Lett. 92 (2004) 075504. [29] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers, Nature 430 (2004) 870. [30] L. T. Sun, J. L. Gong, Z. X. Wang, D. Z. Zhu, J. G. Hu, R. R. Lu, Z. Y. Zhu, Irradiation-induced phase transformations in carbon nanostructures, Nucl. Instr. and Meth. in Phys. Res. B 228 (2005) 26. [31] L. Guan, Z. Shi, Z. Gu, Exfoliation of single-walled carbon nanotube bundles under electron beam irradiation, Carbon 43 (2005) 1084. [32] F. Banhart, J. X. Li, A. V. Krasheninnikov, Carbon nanotubes under electron irradiation: Stability of the tubes and their action as pipes for atom transport, Phys. Rev. B 71 (2005) 241408. [33] H. W. Zandbergen, R. J. H. A. van Duuren, P. F. A. Alkemade, G. Lientschnig, O. Vasquez, C. Dekker, F. D. Tichelaar, Sculpting Nanoelectrodes with a Transmission Electron Beam for lectrical and Geometrical haracterization of Nanoparticles, Nano Lett. 5 (2005) 549. [34] K. M. Youssef, R. O. Scattergood, K. L. Murty, J. A. Horton, C. C. Koch, Ultrahigh strength and high ductility of bulk nanocrystalline copper, Appl. Phys. Lett. 87 (2005) 091904. [35] B. C. Regan, S. Aloni, R. O. Ritchie, U. Dahmen, A. Zettl, Carbon nanotubes as nanoscale mass conveyors, Nature 428 (2004) 924. [36] K. Jensen, W. Mickelson, W. Han, A. Zettl, Current-controlled nanotube growth and zone refinement, Appl. Phys. Lett. 86 (2005) 173107. [37] F. Banhart, The transformation of graphitic onions to diamond under electron irradiation, J. Appl. Phys. 81 (1997) 3440. [38] M. Zaiser, F. Banhart, Radiation-Induced Transformation of Graphite to Diamond, Phys. Rev. Lett. 79 (1997) 3680. [39] Y. Lyutovich, F. Banhart, Low-pressure transformation of graphite to diamond under irradiation, Appl. Phys. Lett. 74 (1999) 659. [40] F. Banhart, J. C. Charlier, P. M. Ajayan, Dynamic Behavior of Nickel Atoms in Graphitic Networks, Phys. Rev. Lett. 84 (2000) 686. [41] J. G. Lee, H. Mori, In situ HREM study on the structural instability of isolated nanometre-sized alloy particles in the Sn-Bi system, J. Elect. Micro. 52 (2003) 57. [42] F. Banhart, E. Hernandez, M. Terrones, Extreme Superheating and Supercooling of Encapsulated Metals in Fullerenelike Shells, Phys. Rev. Lett. 90 (2003) 185502. [43] J. Hiraki, H. Mori, E. Taguchi, H. Yasuda, H.Kinoshita, N. Ohmae, Transformation of diamond nanoparticles into onion-like carbon by electron irradiation studied directly inside an ultrahigh-vacuum transmission electron microscope, Appl. Phys. Lett. 86 (2005) 223101. [44] D. Ugarte, A. Chatelain, W. A. de. Heer, Nanocapillarity and Chemistry in Carbon Nanotubes, Nature 274 (1996) 1897. [45] G. Brown, S. R. Bailey, J. Sloan, C. Xu, S. Friedrichs, E. Flahaut, K. S. Coleman, J. L. Hutchison, R. E. D. Borkowski, M. L. H. Green, Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes, Chem. Comm. (2001) 845. [46] F. Banhart, Ph. Redlich, P. M. Ajayan, The migration of metal atoms through carbon onions, Chem. Phys. Lett. 292 (1998) 554. [47] Y. Gogotsi, J. A. Libera, A. G. Yazicioglu, C. M. Megaridis, In situmultiphase fluid experiments in hydrothermal carbon nanotubes, Appl. Phys. Lett. 79 (2001) 1021. [48] Y. Gogotsi, N. Naguib, J. A. Libera, In situ chemical experiments in carbon nanotubes, Chem. Phys. Lett. 365 (2002) 354. [49] N. Naguib, H. Ye, Y. Gogotsi, A. G. Yazicioglu, C. M. Megaridis, M. Yoshimuro, Observation of Water Confined in Nanometer Channels of Closed Carbon Nanotubes, Nano Lett. 4 (2004) 2237. [50] W. Q. Han, A Zettl, Nanocrystal cleaving, Appl. Phys. Lett. 84 (2004) 2644. [51] B. Y. Sun, Y. Sato, K. Suenaga, T. Okazaki, N. Kishi, T. Sugai, S. Bandow, S. Iijima, H. Shinohara, Entrapping of Exohedral Metallofullerenes in Carbon Nanotubes: (CsC60)n@SWNT Nano-Peapods, J. Am. Chem. Soc. 127 (2005) 17972. [52] P. J. F. Harris, Carbon Nanotubes And Related Structures, Cambridge University Press, United Kingdom, 1999. [53] 上海市奈米科技與發展促進中心, http://www.snpc.org.cn/techLessonDetail.asp?chapterList_id=55 [54] W. Shen, B. Jiang, B. S. Han, S. S. Xie, Investigation of the Radial Compression of Carbon Nanotubes with a Scanning Probe Microscope, Phys. Rev. Lett. 84 (2000) 3634. [55] A. Yasuda, N. Kawase, F. Banhart, W. Mizutani, T. Shimizu, H. Tokumoto, Graphitization Mechanism during the Carbon-Nanotube Formation Based on the In-Situ HRTEM Observation, J. Phys. Chem. B 106 (2002) 1849. [56] C. X. Wang, Y. H. Yang, N. S. Xu, and G. W. Yang, Thermodynamics of Diamond Nucleation on the Nanoscale, J. AM. CHEM. SOC. 126 (2004) 11303. [57] Atlas of Stress-Strain Curves, Howard E. Boyer, ASM INTERNATION Press, 1987.
|