跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/10 07:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅卿紋
研究生(外文):Ciing-wen Lo
論文名稱:活性蛋白質C抑制細菌內毒素引起的人類主動脈內皮細胞死亡之機制
論文名稱(外文):Mechanism of Activated Protein C on Inhibition of the Lipopolysaccharide-induced Cell Death in Human Aortic Endothelial Cells
指導教授:黃光策
指導教授(外文):Kuang-tse Huang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:74
中文關鍵詞:活性蛋白質C細菌內毒素人類主動脈內皮細胞死亡機制
外文關鍵詞:Human Aortic Endothelial cellLPSAPCDeath Mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
摘要

嚴重敗血症患者呈現全身性炎症反應、促凝血素質特異體質(Prothrombotic diathesis)和纖維蛋白溶解失調三種現象。近年來研究指出活性蛋白質C(Activated protein C;APC)可藉由抑制血栓及防止多重器官衰竭的發生來降低敗血症病患20 %的死亡率;然而APC如何抑制細菌內毒素(Lipopolysaccharide;LPS)對內皮細胞傷害的機制目前尚不清楚。在此我們首先利用細胞存活率來描述細胞在不同生長狀態時LPS對細胞死亡的影響,結果顯示未長滿及長滿後1和3天的細胞其存活率在加入LPS後迅速的降低,接著才又短暫的回升,而剛長滿的細胞則因對LPS較為敏感而持續降低其存活率。當加入APC作用時, LPS的持續存在會減少APC對細胞存活率提升的能力,此外APC能藉由維持eNOS蛋白在細胞內的含量來抑制LPS對細胞所造成的死亡,尤其以剛長滿之細胞最為明顯。另一方面APC也能夠藉由增加細胞質內β-catenin的降解以及藉由清除細胞核中的β-catenin來抑制細胞進入S phase來提升LPS處理後細胞的存活率。此外Wnt agonist確實有抑制APC降解細胞質內β-catenin的能力造成最終細胞存活率的下降。
Abstract
The patient with severe sepsis appears inflammation, prothrombotic diathesis, and impairment of fibrinolysis in the whole body. Although the studies show that activated protein C (APC) is effective to reduce mortality by nearly 20% in sepsis patients via inhibiting thrombosis and preventing multiple organ dysfuction, the underlying mechanism of APC on the survival of lipopolysaccharide (LPS)-activated endothelial cells (ECs) remains unclear. Here, we first characterized cell viability after LPS challenge using different growth states of ECs. The results show that the cell viability is quickly decreased after LPS treatment and then is transiently increased with time in the subconfluent cells and the cells of 1 and 3 days after confluence. In the recently confluent cells, the cell viability decreases monotonously after LPS treatment. During the APC treatment, the presence of LPS reduces the effect of APC on cell viability. Furthermore, APC is able to reverse LPS-modulated cell death and downregulation of endothelical nitric oxide synthase (eNOS) protein, especially in the cells of recent confluence. On the other hand, APC may increase the cell viability of LPS-treated ECs through increasing the degradation rate of cytosolic β-catenin and scavenging nuclear β-catenin by binding with the APC-induced genes to prevent cell entry into S phase. In addition, the Wnt agonist is able to inhibit the action of APC on degradation of cytosolic β-catenin and cell viability.
目錄

頁次
中文摘要…………………………….……………………………….....Ⅰ
英文摘要…………………………….……………………………….....Ⅱ
目錄……………………………….……………………………….........Ⅳ
圖目錄……………………………….……………………………….....Ⅷ
表目錄………………………………..…………………….……...……Ⅹ
符號…………………………………..………………….….........……..XI
第一章 緒論………….………………………….………………...…...1
1-1 前言………………………………………….…………………..1
1-2 文獻回顧……………………………………………………..….2
1-2.1 血管內皮細胞 ……………..…………..………………....2
1-2.2 一氧化氮與一氧化氮合成酶…………..……………...….3
1-2.3 一氧化氮與細胞凋零的關係…………..……….……...…5
1-2.4 細胞凋亡的指標Caspase 3……………………....….….…6
1-2.5 加護病房中主要的死因-敗血症……………………..…...9
1-2.6 敗血症的相關因子-細菌內毒素…………...…..………..13
1-2.7 治療敗血症的新藥-活性蛋白質C…………………..….15
1-2.8 APC的訊號傳遞接受器Proteinase-activated receptor
1……………………………………………………….….17
1-2.9 與細胞增生有關的因子β-catenin…………………..…..18
1-2.10人類疾病中與細胞弁鉬棆爬傢鰝熙J白CBP/ p300..………………………………………………….….20
1-3 研究動機與目的……………………………………………….21
第二章 實驗藥品、儀器與器材……………………….……..….…..23
2-1 實驗藥品…………………………………………………….…23
2-1.1 細胞培養…………………..………………………………23
2-1.2 Lysis buffer contents……………..………………………...24
2-1.3 蛋白質濃度測定…………………………………………..24
2-1.4 Caspase 3活性測量……………………….……..……...…24
2-1.5 NO測量…..……………..………………………………….25
2-1.6 Cell viability……………………..…………………………25
2-1.7 Western blotting………...…………………………………..26
2-2 實驗儀器…………………………………………………….....27
2-3 實驗器材……………………………………………..….……..29
第三章 實驗步驟與原理………………………………..…….……...31
3-1 人類大主動脈血管內皮細胞的培養……………..….………..31
3-2 蛋白質濃度測定………………………...…….……………….34
3-3 Caspase 3活性的測量…..…..………...……………………….35
3-4 一氧化氮定量……………….…………………………………38
3-5 Cell viability………………………….………………………...40
3-6 Preparation of nuclear extract-freeze and thaw….……………..41
3-7 Preparation of nuclear extract-Dounce……………………….43
3-8 Western blotting………….…………………………………….44
3-9 Data analysis…………………………………………………...49
第四章 實驗結果與討論……………………………………..…....…50
4-1 LPS及APC對內皮細胞存活率的影響…………………..…...50
4-1.1 LPS對不同生長狀態下內皮細胞存活比例隨時間之變化……………..………………………………………...….50
4-1.2 APC對不同生長狀態的內皮細胞在LPS不同處理時間下細胞存活比例之變化……..……………..………………..52
4-2 APC對不同生長狀態下的內皮細胞在LPS不同處理時間所引起之eNOS降解之抑制………………………...……………..52
4-3 APC藉由增快β-catenin降解抑制LPS所引起造成內皮細胞的死亡……………………………………………………………54
4-3.1不同生長天數的內皮細胞對β-catenin蛋白質之表現……………………………………………………..……54
4-3.2 APC對LPS處理之細胞的β-catenin降解之影響…………………………..……..………………………..58
4-3.3 wnt agonist對細胞存活及β-catenin降解之影響…………………..……………………...…………….....62
第五章 結論未來展望………………………………….………….....65
5.1 結論………………….………………………….….……….….65
5.2 未來展望………………………....……………..….…………..65
附錄A……………………………………………………………...……67
參考文獻………………….……………………………………….……69









圖目錄

頁次
圖1-2.1 APC活化PAR 1的機制………………………………..……....2
圖1-2.2 一氧化氮生成示意圖………………………………….………5
圖1-2.3 一氧化氮致使細胞凋亡的機制…………………………….…6
圖1-2.4 敗血症的機制……………………………………………..….11
圖1-2.5 細菌細胞壁的結構……………………………………...…....12
圖1-2.6 內毒素引發敗血症的機轉…………………………………...13
圖1-2.7 LPS結構圖……………...……………………………………..14
圖1-2.8 內毒素造成細胞凋亡的訊號傳遞…………………….….….16
圖1-2.9 PAR的活化機制……………………………………………....18
圖1-2.10 β-catenin的活化機制………………...…............................…20
圖1-2.11 CBP與p300蛋白的比較………………………………….…21
圖4-1.1 LPS對不同生長狀態下內皮細胞存活比例隨時間之變化….51
圖4-1.2 APC對不同生長狀態的內皮細胞在LPS不同處理時間下細胞存活比例之變化……....………………..……………………..53
圖4-2.1 APC對不同生長狀態下的內皮細胞在LPS不同處理時間所引起之eNOS降解之變化……………..…………………...…....55
圖4-2.2 APC對不同生長狀態下的內皮細胞在LPS持續處理所引起之內皮一氧化氮合成酶降解之變化…………..……………..…57
圖4-3.1 β-catenin在不同生長狀態下內皮細胞的表現差異………….59
圖4-3.2 β-catenin在不同生長狀態下內皮細胞的表現差異……….....60
圖4-3.3在細胞核與細胞質分離下不同APC及LPS處理時間對β-catenin降解之比較………………………..………………...61
圖4-3.4 不同狀態下wnt agonist對細胞存活比率之影響……………63
圖4-3.5 不同狀態下wnt agonist對β-catenin表現量之影響…………64
圖5-1.1 APC降解β-catenin致使細胞存活的路徑圖…………………66
圖A-1 APC及LPS在不同狀態下對Caspase 3活化的影響………….67












表目錄

頁次
表1-2.1 Caspase的分類……………………………………………...…..8
表1-2.2臨床上敗血症及相關症狀的定義…………………………….10
表4-1.1 APC抑制LPS作用的比較……………………………………54


























符號

CrmA: Cytokine response modifier A
ERICE: Evolutionary related ICE
FLICE: Fas-associated death domain-like IL-1β-converting enzyme
IAP: Inhibitors of apoptosis
ICAD: Inhibitor of caspase-activated DNAase
ICE: Interleukin-1β converting enzyme
MICE: Mini ICE
PARP: Poly(ADP-ribose)polymerase-1
PKC: Protein kinase C
SREBP: Sterol regulatory element-binding protein
參考資料

1. Joyce, D. E., Gelbert, L., Ciaccia, A., DeHoff, B., Grinnell, B. W. (2001) Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J.Biol.Chem. 276, 11199-11203
2. Riewald, M., Petrovan, R. J., Donner, A., Mueller, B. M., Ruf, W. (2002) Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science. 296, 1880-1882
3. Mosnier, L. O., Griffin, J. H. (2003) Inhibition of staurosporine-induced apoptosis of endothelial cells by activated protein C requires protease-activated receptor-1 and endothelial cell protein C receptor. Biochem.J. 373, 65-70
4. Parikh, S. A., Edelman, E. R. (2000) Endothelial cell delivery for cardiovascular therapy. Adv.Drug Deliv.Rev. 42, 139-161
5. Luscher, T. F., Barton, M. (1997) Biology of the endothelium. Clin.Cardiol. 20, II-10
6. Christopherson, K. S., Bredt, D. S. (1997) Nitric oxide in excitable tissues: physiological roles and disease. J.Clin.Invest. 100, 2424-2429
7. Huang, P. L., Lo, E. H. (1998) Genetic analysis of NOS isoforms using nNOS and eNOS knockout animals. Prog.Brain Res. 118, 13-25
8. Bolanos, J. P., Almeida, A. (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochim.Biophys.Acta. 1411, 415-436
9. Wang, Y., Newton, D. C., Marsden, P. A. (1999) Neuronal NOS: gene structure, mRNA diversity, and functional relevance. Crit.Rev.Neur. 13, 21-43
10.Taylor, B. S., Alarcon, L. H., Billiar, T. R. (1998) Inducible nitric oxide synthase in the liver: regulation and function. Biochem. (Mosc.). 63, 766-781
11. Titheradge, M. A. (1999) Nitric oxide in septic shock. Biochim.Biophys.Acta. 1411, 437-455
12. Harrison, D. G. (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J.Clin.Invest. 100, 2153-2157
13. Massion, P. B., Dessy, C., Desjardins, F., Pelat, M., Havaux, X., Belge, C., Moulin, P., Guiot, Y., Feron, O., Janssens, S., Balligand, J. L. (2004) Cardiomyocyte-restricted overexpression of endothelial nitric oxide synthase (NOS3) attenuates beta-adrenergic stimulation and reinforces vagal inhibition of cardiac contraction. Circulation. 110, 2666-2672
14. Moncada, S. (1999) Nitric oxide: discovery and impact on clinical medicine. J.R.Soc.Med. 92, 164-169
15. Lopez-Farre, A., Rodriguez-Feo, J. A., Sanchez de, M. L., Rico, L., Casado, S. (1998) Role of nitric oxide in the control of apoptosis in the microvasculature. Int.J.Biochem.Cell Biol. 30, 1095-1106
16. Bosca, L., Hortelano, S. (1999) Mechanisms of nitric oxide-dependent apoptosis: involvement of mitochondrial mediators. Cell Signal. 11, 239-244
17. Becker, J. W., Rotonda, J., Soisson, S. M., Aspiotis, R., Bayly, C., Francoeur, S., Gallant, M., Garcia-Calvo, M., Giroux, A., Grimm, E., Han, Y., McKay, D., Nicholson, D. W., Peterson, E., Renaud, J., Roy, S., Thornberry, N., Zamboni, R. (2004) Reducing the peptidyl features of caspase-3 inhibitors: a structural analysis. J.Med.Chem. 47, 2466-2474
18. Llewelyn, M.,Cohen, J.(2001) Diagnosis of infection in sepsis. Int.Care Med. 27, s10-s32
19. Kathy, L. R. (2005) Current Concepts in Severe Sepsis and Septic Shock. J.Pharm.Pract. 18, 351-362
20. Levy, M. M., Fink, M. P., Marshall, J. C., Abraham, E., Angus, D., Cook, D., Cohen, J., Opal, S. M., Vincent, J. L., Ramsay, G. (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit.Care Med. 31, 1250-1256
21. Wheeler, A. P., Bernard, G. R. (1999) Treating patientswith severe sepsis. N.Engl.J.Med. 340, 207-214
22. Angus, D. C., Linde-Zwirble, W. T., Lidicker, J., Clermont, G., Carcillo, J., Pinsky, M. R. (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29, 1303-1310
23. Van Amersfoort, E. S., Van Berkel, T. J., Kuiper, J. (2003) Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin.Microbiol.Rev. 16, 379-414
24. Van der, P. T., Van Deventer, S. J. (1999) Cytokines and anticytokines in the pathogenesis of sepsis. Infect.Dis.Clin.North Am. 13, 413-26
25. Kleinpell, R. (2003) Advances in treating patients with severe sepsis. Role of drotrecogin alfa (activated). Crit.Care Nurse. 23, 16-29
26. Rietschel, E. T., Kirikae, T., Schade, F. U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A. J., Zahringer, U., Seydel, U., Di, P. F., . (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 8, 217-225
27. Faust, S. N., Levin, M., Harrison, O. B., Goldin, R. D., Lockhart, M. S., Kondaveeti, S., Laszik, Z., Esmon, C. T., Heyderman, R. S. (2001) Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N.Engl.J.Med. 345, 408-416
28. Esmon, C. T. (2001) Protein C anticoagulant pathway and its role in controlling microvascular thrombosis and inflammation. Crit.Care Med. 29, S48-S51
29. Shibata, M., Kumar S. R., Amar A., Fernandez J. A., Hofman F., Griffin J. H., Zlokovic B. V. (2001) Anti-inflammatory, anti-thrombotic, and neuroprotective effects of activated protein C in a murine model of focal ischemic stroke. Circulation. 103, 1799-1805
30. Balk, R. A., Goyette R. E. (2002) The multiple organ dysfunction syndrome in patients with severe sepsis. Advances in the Diagnosis and Management of the Patient With Severe Sepsis.
31. Esmon, C. T. (1992) The protein C anticoagulant pathway. Arterioscler.Thromb. 12, 135-145
32. Bernard, G. R., Vincent, J. L., Laterre, P. F., LaRosa, S. P., Dhainaut, J. F., Lopez-Rodriguez, A., Steingrub, J. S., Garber, G. E., Helterbrand, J. D., Ely, E. W., Fisher, C. J., Jr. (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 344, 699-709
33. Hollenberg, M. D., Compton, S. J. (2002) International Union of Pharmacology. XXVIII. Proteinase-activated receptors. Pharmacol.Rev. 54, 203-217
34. Kawabata, A., Kubo, S., Ishiki, T., Kawao, N., Sekiguchi, F., Kuroda, R., Hollenberg, M. D., Kanke, T., Saito, N. (2004) Proteinase-activated receptor-2-mediated relaxation in mouse tracheal and bronchial smooth muscle: signal transduction mechanisms and distinct agonist sensitivity. J.Pharmacol.Exp.Ther. 311, 402-410
35. Derian, C. K. (2003) Blockade of the thrombin receptor protease-activated receptor-1 with a small-molecule antagonist prevents thrombus formation and vascular occlusion in nonhuman primates. Damiano BP. J.Pharmacol.Exp.Ther. 304, 855-861
36. Noorbakhsh, F., Vergnolle, N., McArthur, J. C., Silva, C., Vodjgani, M., ndrade-Gordon, P., Hollenberg, M. D., Power, C. (2005) Proteinase-activated receptor-2 induction by neuroinflammation prevents neuronal death during HIV infection. J.Immunol. 174, 7320-7329
37. Roviezzo, F., Bucci, M., Brancaleone, V., Di, L. A., Geppetti, P., Farneti, S., Parente, L., Lungarella, G., Fiorucci, S., Cirino, G. (2005) Proteinase-activated receptor-2 mediates arterial vasodilation in diabetes. Arterioscler.Thromb.Vasc.Biol. 25, 2349-2354
38. Ferrell, W. R., Lockhart, J. C., Kelso, E. B., Dunning, L., Plevin, R., Meek, S. E., Smith, A. J., Hunter, G. D., McLean, J. S., McGarry, F., Ramage, R., Jiang, L., Kanke, T., Kawagoe, J. (2003) Essential role for proteinase-activated receptor-2 in arthritis. J.Clin.Invest. 111, 35-41
39. Seiberg, M., Paine, C., Sharlow, E., ndrade-Gordon, P., Costanzo, M., Eisinger, M., Shapiro, S. S. (2000) The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interactions. Exp. Cell Res. 254, 25-32
40. Darmoul, D., Gratio, V., Devaud, H., Lehy, T., Laburthe, M. (2003) Aberrant expression and activation of the thrombin receptor protease-activated receptor-1 induces cell proliferation and motility in human colon cancer cells. Am.J.Pathol. 162, 1503-1513
41. Even-Ram, S., Uziely, B., Cohen, P., Grisaru-Granovsky, S., Maoz, M., Ginzburg, Y., Reich, R., Vlodavsky, I., Bar-Shavit, R. (1998) Thrombin receptor overexpression in malignant and physiological invasion processes. Nat.Med. 4, 909-914
42. Peifer, M., Polakis, P. (2000) Wnt signaling in oncogenesis and embryogenesis--a look outside the nucleus. Science. 287, 1606-1609
43. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (1994) Molecular Biology of the Cell. 3 rd edition of book, Garland Science, New York, 15, 895-896
44. Polakis, P. (2000) Wnt signaling and cancer. Genes Dev. 14, 1837-1851
45. Beachy, P. A., Karhadkar, S. S., Berman, D. M. (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature. 432, 324-331
46. Reya, T., Clevers, H. (2005) Wnt signalling in stem cells and cancer. Nature. 434, 843-850
47. Giles, R. H., Peters, D. J., Breuning, M. H. (1998) Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 14, 178-183
48. Emami, K. H., Nguyen, C., Ma, H., Kim, D. H., Jeong, K. W., Eguchi, M., Moon, R. T., Teo, J. L., Kim, H. Y., Moon, S. H., Ha, J. R., Kahn, M. (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc.Natl.Acad.Sci.U.S.A. 101, 12682-12687
49. Harton, J. A., Zika, E., Ting, J. P. (2001) The histone acetyltransferase domains of CREB-binding protein (CBP) and p300/CBP-associated factor are not necessary for cooperativity with the class II transactivator. J.Biol.Chem. 276, 38715-38720
50. Iioka, T., Furukawa, K., Yamaguchi, A., Shindo, H., Yamashita, S., Tsukazaki, T. (2003) P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain. J.Bone Miner.Res. 18, 1419-1429
51. Cleary, J., Sitwala, K. V., Khodadoust, M. S., Kwok, R. P., Mor-Vaknin, N., Cebrat, M., Cole, P. A., Markovitz, D. M. (2005) p300/CBP-associated factor drives DEK into interchromatin granule clusters. J.Biol.Chem. 280, 31760-31767
52. Hippenstiel, S., Soeth, S., Kellas, B., Fuhrmann, O., Seybold, J., Krull, M., Eichel-Streiber, C., Goebeler, M., Ludwig, S., Suttorp, N. (2000) Rho proteins and the p38-MAPK pathway are important mediators for LPS-induced interleukin-8 expression in human endothelial cells. Blood. 95, 3044-3051
53. Zeuke, S., Ulmer, A. J., Kusumoto, S., Katus, H. A., Heine, H. (2002) TLR4-mediated inflammatory activation of human coronary artery endothelial cells by LPS. Cardiovasc.Res. 56, 126-134
54. Huang, K. T., Kuo, L., Liao, J. C. (1998) Lipopolysaccharide activates endothelial nitric oxide synthase through protein tyrosine kinase. Biochem.Biophys.Res.Commun. 245, 33-37
55. Li, G., Iyengar, R. (2002) Calpain as an effector of the Gq signaling pathway for inhibition of Wnt/β-catenin-regulated cell proliferation. Proc. Natl. Acad.Sci. U S A.99,13254-13259
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top