跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 11:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:章嘉明
研究生(外文):Chia-Ming Chang
論文名稱:被修飾的去氧核糖核酸與蛋白質之生化分析
論文名稱(外文):Bioanalysis of modified DNA and Protein
指導教授:陳皓君
指導教授(外文):Hauh-Jyun Candy Chen
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:170
中文關鍵詞:8-硝基黃嘌呤8-硝基鳥糞嘌呤乙烯基腺嘌呤後轉譯修飾過氧化亞硝酸根液相層析電噴灑游離串聯質譜法
外文關鍵詞:post-translational modificationLC-ESI-MS/MSN6-ethenoadenine8-nitroguanineperoxynitrite8-nitroxanthine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:559
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
乙烯基DNA加成產物是由內生性或外生性物質引起DNA損傷的產物。在此研究中,我們發展了使用同位素稀釋液相層析電噴灑游離串聯質譜法去量測人類尿液中乙烯基腺嘌呤的含量。使用法分析乙烯基腺嘌呤標準品的偵測極限是2.0 pg,而尿液中乙烯基腺嘌呤濃度之定量極限為10 pg/mL。碰撞活化解離子離子質譜圖證明了尿液中乙烯基腺嘌呤的存在。我們使用此方析法鑑定了十八位健康的志願者24小時的尿液樣品中乙烯基腺嘌呤之含量,其結果與同位素稀釋氣相層析負離子化學游離質譜法相當一致。量測尿液中乙烯基腺嘌呤的含量可做為DNA氧化性損傷與以化學藥品預防癌症之研究的生物指標。
具反應性的含氮氧物種會與DNA反應生成8-硝基鳥糞嘌呤和8-硝基黃嘌呤,此二種硝基DNA加成產物因為會產生自發性去嘌呤作用,而在DNA上不穩定。我們利用血晶質和含血質的蛋白質搭配各種還原劑在生理條件下將8-硝基鳥糞嘌呤和8-硝基黃嘌呤還原成8-胺基鳥糞嘌呤和8-胺基黃嘌呤。血紅素搭配還原態硫辛酸還原效果是最佳的。我們也證實了血紅素可以還原經過硝基氯處理過的小牛胸腺DNA後所產生的8-硝基鳥糞嘌呤和8-硝基黃嘌呤。血晶質還原DNA上8-硝基鳥糞嘌呤的效果比含有相同莫爾數血質的血紅素還要好,顯示蛋白質會妨礙反應。此外,我們也證明了還原產物8-胺基鳥糞嘌呤在DNA上是穩定的。這些結果推論血質和生物抗氧化劑所組成的系統可以還原硝基DNA加成產物,代表著體內一種修飾DNA硝化反應的可能途徑。
調節粒腺體弁鄋熔茩M色素c容易受到過氧化亞硝酸根的攻擊。我們利用液相層析電噴灑游離質譜儀量測蛋白質的特定硝化位置,探討過氧化亞硝酸根硝化細胞色素c的選擇性。我們使用原始參考胜肽相對定量法探討不同濃度的具反應性的含氮氧物種對細胞色素c硝化位置的程度。活化碰撞解離的質譜圖可以證明此四個含有3-硝基酪胺酸的胜肽的形成。更進一步地,藉由Na2S2O4將3-硝基酪胺酸還原成3-胺基酪胺酸,再利用液相層析電噴灑游離串聯質譜儀分析可證實3-硝基酪胺酸的形成。
Etheno DNA adducts are promutagenic DNA lesions derived from exogenous as well as endogenous sources. In this report, a new assay based on isotope dilution liquid chromatography-electrospray ionization-tandem mass spectrometry is developed for the quantification of 1,N6-ethenoadenine (eAde) in human urine samples. The detection limit of eAde standard using LC-ESI-MS/MS is 2.0 pg, and the concentration quantification limit for urinary eAde is 10 pg/mL. The presence of eAde in human urine is confirmed by the collision- induced daughter ion spectrum. Using this assay, the levels of eAde in the 24-h urine samples from 18 healthy individuals are very good agreement with those obtained using isotope dilution gas chromatography-negative ion chemical ionization-mass spectrometry. The high specificity and simple sample pretreatment of this LC-ESI-MS/MS method render it a valuable tool in measuring eAde in the complex mixture of human urine.
The nitrated DNA adducts 8-nitroguanine (8NG) and 8-nitroxanthine (8NX) have been shown to derive from reactive nitrogen oxide species, but they are not stable in DNA since they undergo spontaneous depurination. We herein report that hemin and hemoproteins mediate reduction of 8NG and 8NX to their corresponding amino analogues in the presence of reducing agents under physiologically relevant conditions. The hemoglobin macromolecule reduces 8NG and 8NX formed in nitryl chloride-treated calf thymus DNA, as evidenced by the formation of the 8-aminopurines using reversed-phase HPLC with photodiode array detection. We also show that the reduction product 8-aminoguanine is persistent on DNA. These findings suggest that reduction of nitrated DNA by the heme/antioxidant system might represent a possible in vivo pathway to modify DNA nitration.
Cytochrome c, a mediator of mitochondrial function, represents an important potential target of peroxynitrite. In this study, we investigate the selectivity of cytochrome c nitration by peroxynitrite using liquid chromatography-electrospray ionization-mass spectrometry to quantify site-specific nitration of cytochrome c. We compared the extent of nitration in the trypsin digest of cytochrome c treated with various concentrations of nitrating systems by native reference peptides or parent peptides under selective ion monitoring mode. Characterization of the four 3-nitrotyrosine-containing peptides was achieved by their collision-induced dissociation (CID) spectra. Furthermore, reduction of the tryptic digest with Na2S2O4 showed 3-aminotyrosine formation by LC-ESI/MS/MS further confirmed the presence of 3-nitrotyrosine.
目錄 I
圖表目錄 VI
附圖目錄 VIII
英文摘要 XII
中文摘要 XIV

第一部分 以穩定同位素稀釋液相層析電噴灑游離串聯質譜法定量人類尿液中之乙烯基腺嘌呤 1

英文摘要 2
中文摘要 3
第一章 緒論 4
第二章 實驗流程 13
2-1. 藥品 13
2-2. 儀器 13
2-3. 材料 14
2-4. 高效能液相層析儀搭配光電二極體陣列式偵檢器的分析條件 14
2-5. 液相層析電噴灑游離串聯質譜儀分析系統 14
2-6. 實驗步驟 15
2-6-1. 同位素乙烯基腺嘌呤合成 15
2-6-2. 尿液的前處理 16
2-6-3. 以C18-OH固相萃取管收集乙烯基腺嘌呤標準品 16
2-6-4. 以C18-OH固相萃取管收集1 mL人體尿液中的乙烯基腺嘌呤 17
2-6-5. 利用液相層析電噴灑游離串聯質譜法對人體尿液中乙烯基腺嘌呤進行定量 17
2-6-6. 製作定量線 18
2-6-7. 利用氣相層析負離子化學游離質譜法對人體尿液中乙烯基腺嘌呤進行定量 18
第三章 實驗結果與討論 20
3-1. 液相層析電噴灑游離串聯質譜法對於乙烯基腺嘌呤的分析 20
3-2. 偵測極限,校正曲線,精確度和準確度 23
3-3. 分析人類尿液中的乙烯基腺嘌呤含量 25
3-4. 比較氣相層析負離子化學游離質譜法和液相層析電噴灑游離串聯質譜法偵測尿液乙烯基腺嘌呤含量的相關性 28
第四章 結論 29
第五章 參考文獻 30
附圖 41

第二部分 含血質蛋白質搭配還原劑還原DNA上8-硝基嘌呤之研究 50

英文摘要 51
中文摘要 52
第一章 緒論 53
第二章 實驗流程 56
2-1. 藥品 56
2-2. 儀器 57
2-3. 材料 57
2-4. 高效能液相層析儀搭配光電二極體陣列式偵檢器的分析條件 57
2-5. 實驗步驟 58
2-5-1. 過氧化亞硝酸根的合成及濃度測定 58
2-5-2. 8-硝基鳥糞嘌呤的合成 59
2-5-3. 8-硝基黃嘌呤的合成 59
2-5-4. 8-胺基鳥糞嘌呤的合成 59
2-5-5. 8-胺基黃嘌呤的合成 59

2-5-6. 含血質的蛋白質或化合物與反式-2,3-二羥基-1,4-二硫基丁烷對含硝基DNA加成產物的還原反應 60
2-5-6. 血紅素與各種抗氧化劑對含硝基DNA加成產物的還原反應 60
2-5-7. 對照組:實驗各種抗氧化劑對含硝基DNA加成產物的還原反應 60
2-5-8. 血紅素濃度對8-硝基鳥糞嘌呤或8-硝基黃嘌呤的還原效果影響 61
2-5-9. 在無氧的條件下對含8-硝基黃嘌呤進行還原反應 61
2-5-10. 血紅素與反式-二硫基二羥基丁烷對經由硝基氯硝化的去氧核醣核苷酸的反應61
2-5-11. 血紅素或血晶質與反式-2,3-二羥基-1,4-二硫基丁烷對經由過氧化亞硝酸根硝化的去氧核醣核苷酸的反應 62
2-5-12. 8-胺基鳥糞嘌呤在去氧核醣核苷酸上的半生期 63
2-5-13. 去氧核醣核苷酸上的8-硝基鳥糞嘌呤與還原時間的關係 63
第三章 實驗結果與討論 65
3-1. 雙硫醇試劑 65
3-2. 麩胺基硫 67
3-3. 還原態硫辛酸 68
3-4. 抗壞血酸 68
3-5. 酚類化合物 69
3-6. 其他的抗氧化劑 69
3-7. 還原效率 69
3-8. 控制組 69
3-9. 血紅素濃度的影響 70
3-10. 無氧條件下的還原效果 70
3-11. 還原DNA上的8-硝基鳥糞嘌呤和8-硝基黃嘌呤 71
3-12. 血紅素的蛋白質對還原硝基DNA的影響 72
3-13. 8-胺基鳥糞嘌呤在DNA上的穩定性 73
3-14. 還原硝基DNA的速度 74
3-15. 討論 75
第四章 結論 79
第五章 參考文獻 80
附圖 91

第三部分 以液相層析電噴灑游離質譜法分析細胞色素c之選擇性硝化與氧化修飾 97

英文摘要 98
中文摘要 100
第一章 緒論 101
第二章 實驗流程 107
2-1. 藥品 107
2-2. 儀器 107
2-3. 材料 108
2-4. 液相層析電噴灑游離串聯質譜儀分析系統 108
2-4-1. 液相層析儀系統條件 108
2-4-2. 質譜儀全質譜掃瞄模式條件 108
2-4-3. 質譜儀子離子掃瞄模式條件 108
2-4-4. 質譜儀選擇離子追蹤模式條件 109
2-4-5. 電噴灑游離四極柱串聯直線式離子阱質譜儀分析系統 109
2-5. 實驗步驟 109
2-5-1 過氧化亞硝酸根的合成及濃度測定 109
2-5-2. 過氧化亞硝酸根硝化細胞色素c 110
2-5-3. 細胞色素c的自硝化反應 110
2-5-4. 硝基細胞色素c的還原反應 110
2-5-5. 胰蛋白酶消化反應 110
2-5-6. 利用液相層析電噴灑游離串聯質譜儀對經胰蛋白酶消化過的細胞色素c、硝基細胞色素c以及胺基細胞色素c的定性分析 111
2-5-7. 利用液相層析電噴灑游離串聯質譜儀量測細胞色素c特定硝化位置的胜肽和參考胜肽 111
2-5-8. 利用液相層析電噴灑游離串聯質譜儀量測細胞色素c特定甲硫胺酸氧化位置的胜肽和參考胜肽 112
第三章 實驗結果與討論 113
3-1. 液相層析電噴灑游離串聯質譜儀分析經胰蛋白酶消化過的細胞色素c和硝基細胞色素c 113
3-2. 低亞硫酸鈉還原硝基細胞色素c 115
3-3. 原始參考胜肽定量法與過氧化亞硝酸根對細胞色素c的硝化選擇性 116
3-4. 過氧化亞硝酸根對細胞色素c的氧化反應 119
3-5. 細胞色素c的自硝化反應的選擇性 120
3-6. 絕對定量 122
第四章 結論 124
第五章 參考文獻 125
附圖 133
中英對照表 147
第一部份
1.Lawley, P. D. Mutagens as carcinogens: Development of current concepts. Mutat. Res. 213: 3-25; 1989.
2.Poirier, M. C.; Beland, F. A. DNA adduct measurements and tumor incidence during chronic carcinogen exposure in animal models: Implications for DNA adduct-based human cancer risk assessment. Chem. Res. Toxicol. 5: 749-755; 1992.
3.Basu, A.K.; Wood, M. L.; Niedernhofer, L. A.; Essigmann, J. M. Mugatenic and genotoxic effects of three vinylchloride-induced DNA lesion: 1,N6-ethenoadenine, 3,N4-ethenocytosine, and 4-amino- 5-(imidazol-2-yl)imidazole. Biochemistry, 32: 12793-12801; 1993.
4.Cheng, K. C.; Preston, B. D.; Cahill, D. S.; Dosanjh, M. K.; Singer, B.; Loeb, L. A. The vinyl chloride DNA derivative N2,3-ethenoguanine produced GàA transitions in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 88: 9974-9978; 1991.
5.Palejwala, V. A.; Simga, D.; Humayun, M. A. Mechanisms of mutagenesis by exocyclic DNA adducts, transfection of M13 viral DNA bearing a site-specific adducts shows that ethenocytosine is a highly efficient recA-independent mutagenic noninstructional lesion. Biochemistry, 30: 8736-8741; 1991.
6.Fernando, R. C.; Nair, J.; Barbin, A.; Miller, J. A.; Bartsch, H. Detection of 1,N6-ethenodeoxyadenosine and 3,N4-etheno¬-¬¬deoxy¬cytidine by immunoaffinity/ 32P-postlabelling in liver and lung DNA of mice treated with ethyl carbamate (urethane) or its metabolites. Carcinogenesis, 17: 1711-1718; 1996.
7.Battaglia, R.; Conacher, H. B. S.; Page, B. D. Ethyl carbamate (urethane) in alcoholic beverages and foods: a review. Food Addit. Contam. 7: 477-496; 1990.
8.Ough, C. S. Ethyl carbamate in fermented beverages and foods. I. Naturally occurring ethyl carbamate. J. Agric. Food Chem. 24: 323- 328; 1976.
9.Laib, R. J. The role of cyclic base adducts in vinyl- chlorideinduced carcinogenesis: studies on nucleic acid alkylation in vivo. In The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis (Singer, B., and Bartsch, H., Eds.) ; 1986: 101-108, IARC Sci. Publ., 70, Oxford University Press, London.
10.Nair, J.; Barbin, A.; Velic, I.; Bartsch, H. Etheno DNAbase adducts from endogenous reactive species. Mutat. Res. 424: 59-69; 1999.
11.Chen, H.-J. C.; Chung, F.-L. Epoxidation of trans-4- hydroxy-2- nonenal by fatty acid hydroperoxides and hydrogen peroxide. Chem. Res. Toxicol. 9: 306-312; 1996.
12.Lee, S. H.; Oe, T.; Blair, I. A. Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science, 292: 2083- 2086; 2001.
13.Gedigk, P.; Muller, R.; Bechtelshelimer, H. Moephology of liver damage among polyvinyl chloride production workers. A report on 51 cases. Ann. N. Y. Acad. Sci. 246: 278-285; 1975.
14.Buffler, P. A.; Wood, S.; Eifler, C.; Suarez, L.; Kilian, D. J. Mortality experience of workers in a vinyl chloride monomer production plant. J. Occup. Med. 21: 195-203; 1979.
15.Guengerich, F. P. Roles of the vinyl chloride oxidation products 2-chlorooxiranes and 2-chloroacetaldehyde in the vitro formation of etheno adducts of nucleic acid bases Chem. Res. Toxicol.5: 2-5; 1992.
16.Zajdela, F.; Croisy, A.; Barbin, A.; Malaveille, C.; Tomatis, L.; Bartsch, H. M. Carcinogenicity of chloroethylene oxide, an ultimate reactive metabolite of vinyl chloride, and bis(chloromethyl)ether after subcutaneous administration and in initiation-promotion experiments in mice. Cancer Res., 40: 352-356; 1980.
17.Esterbauer, H.; Schaur, R. J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic. Biol. Med., 11: 81-128; 1991.
18.Wu, H. -Y.; Lin, J. -K. Determination of aldehydic lipid peroxidation products with dabsylhydrazine by high-performance liquid chromatography. Anal. Chem. 67: 1603-1612; 1995.
19.Chen, H. -J. C.; Chung, F. -L. Epoxidation of trans-4-hydroxy- 2-nonenal by fatty acid hydroperoxides and hydrogen peroxide. Chem. Res. Toxical. 9: 306-312; 1996.
20.Chen, H. -J. C.; Chung, F. -L. Formation of etheno adducts in reactions of enals via autoxidation. Chem. Res. Toxical. 7: 857-860; 1994.
21.Chen, H. -J. C.; Gonzalez. Shou, M.; Chung, F. -L. 2,3-Epoxy-4- hydroxynonanal, a potential lipid peroxidation product for etheno adduct formation, is not a substrate of human epoxide hydrolase. Carcinogenesis, 19: 939-943; 1998.
22.Sodum, R. S.; Chung, F. -L. Structural characterization of adducts formed in the reaction of 2,3-epoxy-4-hydroxynonanal with deoxyguanosine. Chem. Res. Toxicol. 2: 23-28; 1989.
23.Sodum, R. S.; Chung, F. -L. Stereoselective formation of in vitro nucleic acid adducts by 2,3-epoxy-4-hydroxynonanal. Cancer Res. 51: 137-143; 1991.
24.Chung, F. -L.; Chen, H. -J. C.; Guttenplan, J. B.; Nishikawa, A.; Hard, G. C. 2,3-Epoxy-4-hydroxynonanal as a pontential tumor-initiating agent of lipid peroxidation. Carcinogenesis, 14: 2073-2081; 1993.
25.Sodum, R. S.; Chung, F. -L. 1,N2-Ethenodeoxyguanosine as a potential marker for DNA adduct formation by trans-4-hydroxy- 2-nonenal. Cancer Res. 48: 320-326; 1988.
26.Nair, V.; Offerman, R. J. Ring-extended products from the reaction of epoxy carbonyl compounds and nucleic acid bases. J. Org. Chem. 50: 5627-5632; 1985
27.Jones, W. R.; Dedon, P. C. DNA oxidation as a source of endogenous electrophiles: Formation of ethenoadenine adducts in g-irradiated DNA. J. Am. Chem. Soc., 121: 9231-9232; 1999.
28.Nair, J.; Barbin, A.; Guichard, Y.; Bartsch, H. 1,N6-Etheno- deoxyadenosine and 3,N4-ethenodeoxycytidine in liver DNA from humans and untreated rodents detected by immunoaffinity/ 32P-postlabeling. Carcinogenesis, 16: 613-617; 1995.
29.Chung, F.-L.; Chen, H.-J. C.; Nath, R. G. Lipid peroxidation as a potential endogenous source for the formation of exocyclic DNA adducts: a commentary. Carcinogenesis, 17: 2105-2111; 1996.
30.Nair, J.; Sone, H.; Nagao, M.; Barbin, A.; Bartsch, H. Copper- dependent formation of miscoding etheno-DNA adducts in the liver of Long Evans Cinnamon (LEC) rats developing hereditary hepatitis and hepatocellular carcinoma. Cancer Res. 56: 1267-1271; 1996.
31.Nair, J.; Carmichael, P. L.; Fernando, R. C.; Phillips, D. H.; Strain, A. J.; Bartsch, H. Lipid peroxidation-induced etheno- DNA adducts in the liver of patients with the genetic metal storage disorders Wilson’s disease and primary hemochromatosis. Cancer Epidemiol. Biomarkers Prev. 7: 435-440; 1998.
32.Nair, J.; Vaca, C. E.; Velic, I.; Mutanen, M.; Valsta, L. M.; Bartsch, H. High dietary omega-6 polyunsaturated fatty acids drastically increase the formation of etheno-DNA base adducts in white blood cells of female subjects. Cancer Epidemiol. Biomarkers Prev. 6: 597-601; 1997.
33.Schmid, K.; Nair, J.; Winde, G.; Velic, I.; Bartsch, H. Increased levels of promutagenic etheno-DNA adducts in colonic polyps of FAP patients. Int. J. Cancer. 87: 1-4; 2000.
34.Nair, J.; Gal, A.; Tamir, S.; Tannenbaum, S. R.; Wogan, G. N.; Bartsch, H. Etheno adducts in spleen DNA of SJL mice stimulated to overproduce nitric oxide. Carcinogenesis, 19: 2081- 2084; 1998.
35.Ohshima, H.; Bartsch, H. Chronic infections and inflammatory processes as cancer risk factors: Possible role of nitric oxide in carcinogenesis. Mutat. Res. 305: 253-264; 1994.
36.Bartsch, H.; Nair, J. New DNA-based biomarkers for oxidative stress and cancer chemoprevention studies. Eur. J. Cancer. 36: 1229-1234; 2000.
37.Dizdaroglu, M.; Gajewski, E. Selected-ion mass spectrometry: Assays of oxidative DNA damage. Methods Enzymol. 186: 530-544; 1990.
38.Giese, R. W. Detection of DNA adducts by electron capture mass spectrometry. Chem. Res. Toxicol. 10: 255-270; 1997.
39.Chen, H.-J. C.; Zhang, L.; Cox, J.; Cunningham, J. A.; Chung, F.-L. DNA adducts of 2,3-epoxy-4-hydroxynonanal: Detection of 7-(1’,2-dihydroxy-heptyl)-3H-imidazo[2,1,i ]-purine and 1,N6- ethenoadenine by gas chromatography/negative ion chemical ionization/mass spectrometry. Chem. Res. Toxicol. 11: 1474-1480; 1998.
40.Chen, H.-J. C.; Lin, T.-C.; Hong, C.-L.; Chiang, L.-C. Analysis of 3,N4-ethenocytosine in DNA and in human urine by isotope dilution gas chromatography/negative ion chemical ionization/mass spectrometry. Chem. Res. Toxicol. 14: 1612-1619; 2001.
41.Fedtke, N.; Boucheron, J. A.; Walker, V. E.; Swenberg, J. A. Vinyl chloride-induced DNA adducts. II: Formation and persistence of 7-(2’-oxoethyl)guanine and N2,3-ethenoguanine in rat tissue DNA. Carcinogenesis, 11: 1287-1292; 1990.
42.Ham, A. J.; Ranasinghe, A.; Morinello, E. J.; Nakamura, J.; Upton, P. B.; Johnson, F.; Swenberg, J. A. Immunoaffinity/gas chromatography/ high-resolution mass spectrometry method for the detection of N2,3-ethenoguanine. Chem. Res. Toxicol. 12: 1240-1246; 1992.
43.Morinello, E. J.; Ham, A.-J. L.; Ranasinghe, A.; Sangaiah, R.; Swenberg, J. A. Simultaneous quantitation of N2,3-ethenoguanine and 1,N2-ethenoguanine with an immunoaffinity/ gas chromatography/high-resolution mass spectrometry assay. Chem. Res. Toxicol. 14: 327-334; 2001.
44.Matijasevie, Z.; Sekiguchi, M.; Ludlum, D. B. Release of N2,3-ethenoguanine from chloroacetaldehyde-treated DNA by Escherichia coli 3-methyladenine DNA glycosylase II. Proc. Natl. Acad. Sci. U.S.A., 89: 9331-9334; 1992.
45.Saparbaev, M.; Laval, J. 3,N4-Ethenocytosine, a highly mutagenic adduct, is a primary substrate for Escherichia coli double-stranded uracil-DNA glycosylase and human mismatch-specific thymine-DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A., 95: 8508-8513; 1998.
46.Hang, B.; Medina, M.; Fraenkel-Conrat, H.; Singer, B. A 55-kDa protein isolated from human cells shows DNA glycosylase activity toward 3,N4-ethenocytosine and the G/T mismatch. Proc. Natl. Acad. Sci. U.S.A., 95: 13561-13566; 1998.
47.Sancar, A. Mechanisms of DNA excision repair. Science, 266: 1954- 1956; 1994.
48.Holt, S.; Yen, T. Y.; Sangaiah, R.; Swenberg, J. A. Detection of 1,N6-ethenoadenine in rat urine after chloroethylene oxide exposure. Carcinogenesis, 19: 1763-1769; 1998.
49.Kadlubar, F. F.; Anderson, K. E.; Haussermann, S.; Lang, N. P.; Barone, G. W.; Thompson, P. A.; MacLeod, S. L.; Chou, M. W.; Mikhailova, M.; Plastaras, J.; Marnett, L. J.; Nair, J.; Velic, I.; Bartsch, H. Comparison of DNA adduct levels associated with oxidative stress in human pancreas. Mutat. Res. 405: 125-133; 1998.
50.Godschalk, R.; Nair, J.; van Schooten, F. J.; Risch, A.; Drings, P.; Kayser, K.; Dienemann, H.; Bartsch, H. Comparison of multiple DNA adduct types in tumor adjacent human lung tissue: effect of cigarette smoking. Carcinogenesis, 23: 2081-2086; 2002.
51.Hanaoka, T.; Nair, J.,; Takahashi, Y.; Sasaki, S.; Bartsch, H.; Tsugane, S. Urinary level of 1,N6-ethenodeoxyadenosine, a marker of oxidative stress, is associated with salt excretion and omega 6-polyunsaturated fatty acid intake in postmenopausal Japanese women. Int. J. Cancer, 100: 71-75; 2002.
52.Chen, H.-J. C.; Chiu, W.-L. Detection and quantification of 1,N6-ethenoadenine in human urine by stable isotope dilution capillary gas chromatography/negative ion chemical ionization/mass spectrometry. Chem. Res. Toxicol. 16: 1099-1106; 2003.
53.Yen, T.-Y.; Holt, S.; Sangaiah, R.; Gold, A.; Swenberg, J. A. Quantitation of 1,N6-ethenoadenine in rat urine by immunoaffinity extraction combined with liquid chromatography/ electrospray ionization mass spectrometry. Chem. Res. Toxicol. 11: 810-815; 1998.
54.Chen, H.-J. C.; Chiang, L.-C.; Tseng, M.-C.; Zhang, L. L.; Ni, J.; Chung, F.-L. Detection and quantification of 1,N6- ethenoadenine in human placental DNA by mass spectrometry. Chem. Res. Toxicol. 12: 1119-1126; 1999.
55.Doerge, D. R.; Churchwell, M. I.; Fang, J.-L.; Beland, F. A. Quantification of etheno-DNA adducts using liquid chromatography, on-line sample processing, and electrospray tandem mass spectrometry. Chem. Res. Toxicol. 13: 1259-1264; 2000.
56.Churchwell, M. I.; Beland, F. A.; Doerge, D. R. Quantification of multiple DNA adducts formed through oxidative stress using liquid chromatography and electrospray tandem mass spectrometry. Chem. Res. Toxicol. 15: 1295-1301; 2002.
57.Loureiro, A. P. M.; Marques, S. A.; Garcia, C. C. M.; Di Mascio, P.; Medeiros, M. H. G. Development of an on-line liquid chromatography-electrospray tandem mass spectrometry assay to quantitatively determine 1,N2-etheno-2’-deoxyguanosine in DNA. Chem. Res. Toxicol. 15: 1302-1308; 2002.
58.Frelon, S.; Douki, T.; Ravanat, J.-L.; Pouget, J.-P.; Tornabene, C.; Cadet, J. High-performance liquid chromatography tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA. Chem. Res. Toxicol. 13: 1002-1010; 2002.
59.Rouzer, C. A.; Chaudhary, A. K.; Nokubo, M.; Ferguson, D. M.; Reddy, G. R.; Blair, I. A.; Marnett, L. J. Analysis of the malondialdehyde-2’-deoxyguanosine adduct pyrimidopurinone in human leukocyte DNA by gas chromatography/electron capture/ negative chemical ionization/mass spectrometry. Chem. Res. Toxicol. 10: 181-188; 1997.
60.International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. 38: Tobacco Smoking, International Agencyfor Research on Cancer, Lyon, France. 1986
61.Morrow, J. D.; Frei, B.; Longmire, A. W.; Gaziano, J. M.; Lynch, S. M.; Shyr, Y.; Strauss, W. E.; Oates, J. A.; Roberts, L. J. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N. Engl. J. Med. 332, 1198-1203; 1995.
62.Phillips, D. H.; Hewer, A.; Martin, C. N.; Garner, R. C.; King, M. M. Correlation of DNA adduct levels in human lung with cigarette smoking. Nature, 336: 790-79; 1988.
63.Bogdanov, M. B.; Beal, M. F.; McCabe, D. R.; Griffin, R. M.; Matson, W. R. A carbon column-based liquid chromatography electrochemical approach to routine 8-hydroxy-2’-deoxyguanosine measurements in urine and other biologic matrices: a one-year evaluation of methods. Free Radical Biol. Med. 27: 647-666; 1999.
64.Weimann, A.; Belling, D.; Poulsen, H. E. Quantification of 8-oxo- guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography-electrospray tandem mass spectrometry. Nucleic Acids Res. 30: 7e; 2002.
65.Heinegard, D.; Tiderstrom, G. Determination of serum creatinine by a direct colorimetric method. Clin. Chim. Acta. 43: 305-310; 1973.
66.Bianchini, F.; Donato, F.; Faure, H.; Ravanat, J. L.; Hall, J.; Cadet, J. Urinary excretion of 5-(hydroxymethyl) uracil in healthy volunteers: Effect of active and passive tobacco smoke. Int. J. Cancer 77: 40-46; 1998.
第二部分
1.Koppnol, W. H.; Moreno, J. J.; Pryor, W. A.; Ischiropoulos, H.; Beckman, J. S. Peroxynitrite, a clocked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5: 834-842; 1992.
2.Ischiropoulos, H.; Zhu, L.; Beckman, J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 298: 446-451; 1992.
3.Lemecier, J. N.; Squadrito, G. L.; Pryor, W. A. Spin trap studies on the decomposition of peroxynitrite. Arch. Biochem. Biophys. 321: 31-39; 1995.
4.Beckman, J. S.; Beckman T. W.; Chen, J.; Marshall, P. A.; Freeman, B., Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U.S.A. 87: 1620-1624; 1990.
5.Marla, S. S.; Lee, J.; Groves, J. T. Peroxynitrite rapidly permeates phospholipid membranes. Proc. Natl. Acad. Sci. U.S.A. 94: 14243- 14248; 1997.
6.Denicola, A.; Souza, J. M.; Radi, R. Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl. Acad. Sci. U.S.A. 95: 3566-3571; 1998.
7.Ischiropoulos, H.; Zhu, L.; Chen, J.; Tsai, M.; Martin, J. C.; Smith, C. D.; Beckman, J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298: 431-437; 1992.
8.Burney, S.; Caulfield, J. L.; Niles, J. C.; Wishnok, J. S.; Tannenbaum, S. R. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat. Res. 424: 37-49; 1999.
9.Yermilov, V.; Rubio, J.; Ohshima, H. Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett. 376: 207-210; 1995.
10. van der Vliet, A.; Eiserich, J. P.; Halliwell, B.; Cross, C. E. Formation of reaction nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J. Am. Chem. Soc. 272: 7617-7625; 1997.
11. Eiserich, J. P.; Hristova, M.; Cross, C. E.; Jones, A. D.; Freeman, B. A.; Halliwell, B.; van der Vliet, A. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutropphils. Nature, 391: 393-397; 1998.
12. Farrell, A. J.; Blake, D. R.; Palmer, R. M.; Moncada, S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann. Rheum. Dis. 51: 1219-1222; 1992.
13. Eiserich, J. P.; Cross, C.E.; Jones, A. D.; Halliwell, B.; van der Vliet, A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J. Biol. Chem. 271: 19199-19208; 1996.
14. Whiteman, M.; Spencer, J. P.; Jenner, A.; Halliwell, B. Hypochlorous acid-induced DNA base modification: Potentiation by nitrite: Biomarkers of DNA damage by reactive oxygen species. Biochem. Biophys. Res. Comm. 257: 572-576; 1999.
15. Byun, J.; Henderson, J. P.; Mueller, D.M.; Heinecke, J. W. 8-Nitro-2'- deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase-hydrogen peroxide- nitrite system of activated human phagocytes. Biochemistry, 38: 2590-2600; 1999.
16. Schmitt, D.; Shen, Z.; Zhang, R.; Colles, S. M.; Wu, W.; Salomon, R. G.; Chen, Y.; Chisolm, G. M.; Hazen, S. L. Leukocytes utilize myeloperoxidase-generated nitrating intermediates as physiological catalysts for the generation of biologically active oxidized lipids and sterols in serum. Biochemistry, 38: 16904-16915; 1999.
17. Panasenko, O. M.; Briviba, K.; Klotz, L. O.; Sies, H. Oxidative modification and nitration of human low-density lipoproteins by the reaction of hypochlorous acid with nitrite. Arch. Biochem. Biophys. 343: 254-259; 1997.
18. Ohshima, H.; Yoshie, Y.; Auriol. S.; Gilibert, I. Antioxidant and pro-oxidant actions of flavonoids: effects on DNA damage induced by nitric oxide, peroxynitrite, and nitroxyl anion. Free Radic. Biol. Med. 25: 1057-1065; 1998.
19. Tuo, J.; Liu, L.; Poulsen, H. E.; Weimann, A.; Svendsen, O.; Loft, S. Importance of guanine nitration and hydroxylation in DNA in vitro and in vivo. Free Radic. Biol. Med. 29: 147-155; 2000.
20. Chen, H.-J. C.; Chen, Y.-M.; Wang, T.-F.; Wang, K.-S.; Shiea, J. 8-Nitroxanthine, an adduct derived from 2'-deoxyguanosine or DNA reaction with nitryl chloride, Chem. Res. Toxicol., 14: 536-546; 2001.
21. Hsieh, Y. S.; Wang, H. C.; Tseng, T. H.; Chang, W. C.; Wang, C. J. Gaseous nitric oxide-induced 8-nitroguanine formation in human lung fibroblast cells and cell-free DNA. Toxicol. Appl. Pharmacol. 172: 210-216; 2001.
22. Chen, H-J. C.; Wang, T.-F.; Chen, Y.-M. Role of nitrite on nitration of 2’-deoxyguanosine by nitryl chloride. J. Chin. Chem. Soc. 49: 275-281; 2002.
23. Ohshima, H.; Bartsch, H. Chronic inflection and inflammatory processed as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mut. Res. 305: 253-264; 1994.
24. Szabo, C.; Ohshima, H. DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide, 1: 373-385; 1997.
25. Kamisaki, Y.; Wada, K.; Bian, K.; Balabanli, B.; Davis, K.; Martin, E.; Behbod, F.; Lee, Y. C.; Murad, F. An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc. Natl. Acad. Sci. USA. 95: 11584-11589; 1998.
26. Kuo, W. N.; Kanadia, R. N.; Shanbhag, V. P.; Toro, R. Denitration of peroxynitrite-treated proteins by “protein nitratases” from rat brain and heart. Mol. Cell Biochem. 201: 11-16; 1999.
27. Kuo, W. N.; Kanadia, R. N.; Shanbhag, V. P. Denitration of peroxynitrite-treated proteins by “protein nitratases” from dog prostate. Biochem. Mol. Biol. Int. 47: 1061-1067; 1999.
28. Lightfoot, R. T.; Shuman, D.; Ischiropoulos, H. Oxygen- insensitive nitroreductases of Escherichia coli do not reduce 3-nitrotyrosine. Free Radic. Biol. Med. 28: 1132-1136; 2000.
29. Chen, H.-J. C.; Chen, Y.-M.; Chang, C.-M. Lipoyl dehydrogenase catalyzed reduction of nitrated DNA and protein adducts using dihydrolipoic acid or ubiquinol as cofactor. Chem. Biol. Interact. 140: 199-213; 2002.
30. Balabanli, B.; Kamisaki, Y.; Martin, E.; Murad, F. Requirements for heme and thiols for the nonenzymatic modification of nitrotyrosin. Proc. Natl. Acad. Sci. USA. 96: 13136-13141; 1999.
31. Bunn, H. F.; Forget, B. G. in: Hemoglobin. Mol. Gen. Clin. Aspects, Philadelphia: Saunders; 1986: 634-662.
32. Faivre, B.; Menu, P.; Labrude, P.; Vigneron, C. Hemoglobin autooxidation/oxidation mechanisms and methemoglobin prevention or reduction processes in the bloodstream. Literature review and outline of autooxidation reaction. Art. Cells, Blood Sub. Immo. Biotech. 26: 17-26; 1998.
33. Nelson, D. P.; Kiesow, L. A. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C. Anal. Biochem. 49: 474-478; 1972.
34.Uppu, R. M.; Pryor, W. A. Biphasic synthesis of high concentrations of peroxynitrite using water-insoluble alkyl nitrite and hydrogen peroxide. Method Enzymol. 269: 322-329; 1996.
35.Beckman, J. S.; Chen, J.; Ischiropoulos, H.; Crow, J. P. Oxidative chemistry of peroxynitrite. Method Enzymol. 233: 229-240; 1994.
36. Sodum, R. S.; Nie, G.; Fiala, E. S. 8-Aminoguanine: a base modification produced in rat liver nucleic acids by the hepatocarcinogen 2-nitropropane. Chem. Res. Toxicol. 6: 269-276; 1993.
37. Forman, H. J.; Azzi, A. On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB J. 11: 374-375; 1997.
38. Faivre, B.; Menu, P.; Labrude, P.; Vigneron, C. Hemoglobin autoxidation/oxidation mechanisms and methemoglobin prevention or reduction processes in the bloodstream. Literature review and outline of autoxidation reaction. Art. Cells Blood Sub. Immo. Biotech. 26: 17-26; 1998.
39. Antonini, E.; Wyman, J.; Brunori, M.; Taylor, J. F.; Rossi-Fanelli, A.; Caputo, A. Studies on the oxidation-reduction potentials of heme Proteins. I. human hemoglobin. J. Biol. Chem. 239: 907-912; 1964.
40. Shifman, J. M.; Gibney, B. R.; Sharp, R. E.; Dutton, P. L. Heme redox potential control in de novo designed four-a-helix bundle proteins. Biochemistry, 39: 14813-14821; 2000.
41. Rodriguez, J. C.; Rivera, M. Conversion of mitochondrial cytochrome b5 into a species capable of performing the efficient coupled oxidation of heme. Biochemistry, 37: 13082-13090; 1998.
42. Lo, S. C.; Aft, R.; Mueller, G. C. Role of nonhemoglobin heme accumulation in the terminal differentiation of friend erythroleukemia cells. Cancer Res. 41: 864-870; 1981.
43. Ross, J.; Sautner, D. Induction of globin mRNA accumulation by hemin in cultured erythroleukemic cells. Cell, 8: 513-520; 1976.
44. Ishii, D. N.; Maniatis, G. M. Hemin promotes rapid neurite outgrowth in cultured mouse neuroblastoma cells. Nature, 274: 372-374; 1978.
45. Chen, J. J.; London, I. M. Hemin enhances the differentiation of mouse 3T3 cells to adipocytes. Cell, 26: 117-122; 1981.
46. Skulachev, V. P. Membrane bioenergetics. Berlin: Springer; 1988.
47. Skulachev, V. P. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett. 423: 275-280; 1998.
48. Korshunov, S. S.; Krasnikov, B. F.; Pereverzev, M. O.; Skulachev, V. P. The antioxidant functions of cytochrome c. FEBS Lett. 462: 192-198; 1999.
49. Winterbourn, C. C. Free radical production and oxidative reactions of hemoglobin. Environ. Health Perspect. 64: 321-330; 1985.
50. Constantinescu, A.; Han, D.; Packer, L. Vitamin E recycling in human erythrocyte membranes. J. Biol. Chem. 268: 10906 -10913; 1993.
51. Xu, D. P.; Wells, W. W. Alpha-lipoic acid-dependent regeneration of ascorbic acid from dehydroascorbic acid in rat liver mitochondria. J. Bioenerg. Biomembr. 28: 77-85; 1996.
52. Han, D.; Handelman, G.; Marcocci, L.; Sen, C. K.; Roy, S.; Kobuchi, H.; Tritschler, H. J.; Flohe, L.; Packer, L. Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors. 6: 321-338; 1997.
53. Kozlov, A. V.; Gille, L.; Staniek, K.; Nohl, H. Dihydrolipoic acid maintains ubiquinone in the antioxidant active form by twoelectron reduction of ubiquinone and one-electron reduction of ubisemiquinone. Arch. Biochem. Biophys. 363: 148-154; 1999.
54. Romero, F. J.; Ordonez, I.; Arduini, A.; Cadenas, E. The reactivity of thiols and disulfides with different redox states of myoglobin. Redox and addition reactions and formation of thiyl radical intermediates. J. Biol. Chem. 267: 1680-1688; 1992.
55. Meister, A. On the antioxidant effects of ascorbic acid and glutathione. Biochem. Pharmacol. 44: 1905-1915; 1992.
56. Huang, M.-T.; Ferraro, T. Phenolic compounds in food and cancer prevention. In: Ho, C.-T., ed. Phenolic compounds in food and their effects on health II. Antioxidants and Cancer Prevention. Washington, DC: The American Chemical Society; 1992: 8-33.
57. Kiese, M. Methemoglobinemia: a comprehensive treatise. Cleveland, OH: CRC Press; 1974.
58. Dershwitz, M.; Novak, R. F. Generation of superoxide via the interaction of nitrofurantoin with oxyhemoglobin. J. Biol. Chem. 257: 75-79; 1982.
59. Krainev, A. G.; Williams, T. D.; Bigelow, D. J. Enzymatic reduction of 3-nitrotyrosine generates superoxide. Chem. Res. Toxicol. 11: 495-502; 1998.
60. Chen, H.; Tini, M.; Evans, R. M. HATs on and beyond chromatin. Curr. Opinion Cell Biol. 13: 218-224; 2001.
61. Bhat, G. J.; Padmanaban, G. Heme is a positive regulator of cytochrome P-450 gene transcription. Arch. Biochem. Biophys. 264: 584-590; 1988.
62. Carr, A.; Biggin, M. D. A comparison of in vivo and in vitro DNA-binding specificities suggests a new model for homeoprotein DNA binding in Drosophila embryos. EMBO J. 18: 1598-1608; 1999.
63. Richter, C.; Park, J. W.; Ames, B. N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85: 6465-6467; 1988.
64. Giulivi, C.; Poderoso, J. J.; Boveris, A. Production of nitric oxide by mitochondria. J. Biol. Chem. 273: 11038-11043; 1998.
65. Brown, G. C. Nitric oxide and mitochondrial respiration. Biochim. Biophys. Acta. 1411: 351-369; 1999.
66. Boveris, A.; Costa, L. E.; Poderoso, J. J.; Carreras, M. C.; Cadenas, E. Regulation of mitochondrial respiration by oxygen and nitric oxide. Ann. NY Acad. Sci. 899: 121-135; 2000.
67. Ballinger, S. W.; Bouder, T. G.; Davis, G. S.; Judice, S. A.; Nicklas, J. A.; Albertini, R. J. Mitochondrial genome damage associated with cigarette smoking. Cancer Res. 56: 5692-5697; 1996.
68. 2-Nitropropane. IPCS Environmental Health Criteria 138, World Health Organization. Geneva: Switzerland; 1992.
69. Hoffmann, D.; Rathkamp, G. Chemical studies on tobacco smoke. III. Primary and secondary nitroalkanes in cigarette smoke. Beitr. Tabakforsch. 4: 124-134; 1968.
70. Conaway, C. C.; Nie, G.; Hussain, N. S.; Fiala, E. S. Comparison of oxidative damage to rat liver DNA and RNA by primary nitroalkanes, secondary nitroalkanes, cyclopentanone oxime, and related compounds. Cancer Res. 51: 3143-3147; 1991.
71. Sodum, R. S.; Sohn, O. S.; Nie, G.; Fiala, E. S. Activation of the liver carcinogen 2-nitropropane by aryl sulfotransferase. Chem. Res. Toxicol. 7: 344-351; 1994.
72. Sodum, R. S.; Fiala, E. S. Amination of tyrosine in liver cytosol protein of male F344 rats treated with 2-nitropropane, 2-nitrobutane, 3-nitropentane, or acetoxime. Chem. Res. Toxicol. 10: 1420-1426; 1997.
73. Venkatarangan, L.; Sivaprasad, A.; Johnson, F.; Basu, A. K. Site-specifically located 8-amino-2'-deoxyguanosine: thermodynamic stability and mutagenic properties in. Escherichia coli. Nucleic Acids. Res. 29: 1458-1463; 2001.
74. Soliva, R.; Guimil Garcia, R.; Blas, J. R.; Eritja, R.; Asensio, J. L.; Gonzalez, C.; Luque, F. J.; Orozco, M. DNA-triplex stabilizing properties of 8-aminoguanine. Nucleic Acids. Res. 28: 4531-4539; 2000.
75. Tan, X.; Suzuki, N.; Johnson, F.; Grollman, A. P.; Shibutani, S. Mutagenic properties of the 8-amino-2'-deoxyguanosine DNA adduct in mammalian cells. Nucleic Acids. Res. 27: 2310-2314; 1999.
76. Norman, V.; Keith, C. H. Nitrogen oxides in tobacco. Nature, 205: 915-918; 1965.
77. Lin, J. K.; Chen, K. J.; Liu, G. Y.; Chu, Y. R.; Lin-Shiau, S. Y. Nitration and hydroxylation of aromatic amino acid and guanine by the air pollutant peroxyacetyl nitrate. Chem. Biol. Interact. 127: 219-236; 2000.
78. Hsieh, Y. S.; Chen, B. C.; Shiow, S. J.; Wang, H. C.; Hsu, J. D.; Wang, C. J. Formation of 8-nitroguanine in tobacco cigarette smokers and in tobacco smoke-exposed Wistar rats. Chem. Biol. Interact. 140: 67-80; 2002.
79. Masuda, M.; Nishino, H.; Ohshima, H. Formation of 8-nitroguanosine in cellular RNA as a biomarker of exposure to reactive nitrogen species. Chem. Biol. Interact. 139:187-197; 2002.
第三部分

1.Ohshima, H.; Bartsch, H. Chronic inflection and inflammatory processed as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mut. Res. 305: 253-264; 1994.
2.Koppnol, W. H.; Moreno, J. J.; Pryor, W. A.; Ischiropoulos, H.; Beckman, J. S. Peroxynitrite, a clocked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5: 834-842; 1992.
3.Ischiropoulos, H.; Zhu, L.; Beckman, J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 298: 446-451; 1992.
4.Gordon, L.; Weitzman, S. A. Inflammation and Cancer, Cancer J. 6: 257-261; 1993.
5.Lemecier, J. N.; Squadrito, G. L.; Pryor, W. A. Spin trap studies on the decomposition of peroxynitrite. Arch. Biochem. Biophys. 321: 31-39; 1995.
6.Beckman, J. S.; Beckman T. W.; Chen, J.; Marshall, P. A.; Freeman, B., Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U.S.A. 87: 1620-1624; 1990.
7.Marla, S. S.; Lee, J.; Groves, J. T. Peroxynitrite rapidly permeates phospholipid membranes. Proc. Natl. Acad. Sci. U.S.A. 94: 14243- 14248; 1997.
8.Denicola, A.; Souza, J. M.; Radi, R. Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl. Acad. Sci. U.S.A. 95: 3566-3571; 1998.
9.Yermilov, V.; Yoshie, Y.; Rubio, J.; Ohshima, H. Effects of carbon dioxide/ bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by peroxynitrite. FEBS Lett. 399: 67-70; 1996.
10.Burney, S.; Caulfield, J. L.; Niles, J. C.; Wishnok, J. S.; Tannenbaum, S. R. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat. Res. 424: 37-49; 1999.
11.Yermilov, V.; Rubio, J.; Ohshima, H. Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett. 376: 207-210; 1995.
12.Ischiropoulos, H.; Zhu, L., Chen, J.; Tsai, M.; Martin, J. C.; Smith, C. D.; Beckman, J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298: 431-437; 1992.
13.Castro, L.; Eiserich, J. P.; Sweeney, S.; Radi, R.; Freeman, B. A. Cytochrome c: catalyst and target of nitrite-hydrogen peroxide- dependent protein nitration. Arch. Biochem. Biophys. 421: 99-107; 2004.
14.Kilinc, K.; Kilinc, A.; Wolf, R. E.; Grisham, M. B. Myoglobin-catalyzed tyrosine nitration: no need for peroxynitrite. Biochem. Biophys. Res. Commun. 285: 273-6; 2001.
15.Herold, S. Nitrotyrosine, dityrosine, and nitrotryptophan formation from metmyoglobin, hydrogen peroxide, and nitrite. Free Radic. Biol. Med. 36: 565-579; 2004.
16.Grzelak, A.; Balcerczyk A.; Mateja, A.; Bartosz, G. Hemoglobin can nitrate itself and other proteins. Biochimica. et Biophysica. Acta. 1528: 97-100; 2001.
17.MacMillan-Crow, L. A.; Crow, J. P.; Kerby, J. D.; Beckman, J. S.; Thompson, J. A. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc. Natl. Acad. Sci. U.S.A. 93: 11853-11858; 1996.
18.Guo, W.; Adachi, T.; Matsui, R.; Xu, S.; Jiang, B.; Zou, M. H.; Kirber, M.; Lieberthal, W.; Cohen, R. A. Quantitative assessment of tyrosine nitration of manganese superoxide dismutase in angiotensin II-infused rat kidney. Am. J. Physiol. 285: H1396-H1403; 2003.
19.Cassina, A. M.; Hodara, R.; Souza, J. M.; Thomson, L.; Castro, L.; Ischiropoulos, H.; Freeman, B. A.; Radi, R. Cytochrome c nitration by peroxynitrite. J. Biol. Chem. 275: 21409-21415; 2000.
20.Vadseth, C.; Souza, J. M.; Thomson, L.; Seagraves, A.; Nagaswami, C.; Scheiner, T.; Torbet, J.; Vilaire, G.; Bennett, J. S.; Murciano, J. C.; Muzykantov, V.; Penn, M. S.; Hazen, S. L.; Weisel, J. W.; Ischiropoulos, H. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J. Biol. Chem. 279: 8820-8826; 2004.
21.Halliwell, B.; Zhao, K.; Whiteman, M. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic. Res. 31: 651-669; 1999.
22.Radi, R.; Cassina, A.; Hodara, R.; Quijano, C.; Castro, L. Peroxynitrite reactions and formation in mitochondria, Free Radic. Biol. Med. 33: 1451-1464; 2002.
23.Gebicka, L.; Didik, J. Mechanism of peroxynitrite interaction with cytochrome c. Acta. Biochim. Pol. 50: 815-23; 2003.
24.Chen, Y. R.; Deterding, L. J.; Sturgeon, B. E.; Tomer, K. B.; Mason, R. P. Protein oxidation of cytochrome c by reactive halogen species enhances its peroxidase activity. J. Biol. Chem. 277: 29781-29791; 2002.
25.Jiang, X.; Wang, X. Cytochrome c-mediated apoptosis, Annu. ReV. Biochem. 73: 87-106; 2004.
26.Nantes, I. L.; Zucchi, M. R.; Nascimento, O. R.; Faljoni-Alario, A. Effect of heme iron valence state on the conformation of cytochrome c and its association with membrane interfaces. A CD and EPR investigation. J. Biol. Chem. 276: 153-158; 2001.
27.Vanneste, W. H. Molecular proportion of the fixed cytochrome c components of the respiratory chain of Keilin-Hartree particles and beef heart mitochondria. Biochim. Biophys. Acta. 113: 175-178; 1996.
28.Sokolovsky, M.; Aviram, I.; Schejter, A. Nitrocytochrome c. I. Structure and enzymic properties. Biochemistry. 9: 5113-5118; 1970.
29.Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60: 2299- 301; 1988.
30.Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 63: 1193A-1203A; 1991.
31.Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science, 246: 64-71; 1989.
32.Randey, A.; Mann, M. Proteomics to study genes and genomes. Nature, 405: 837-846; 2000.
33.Greis, K. D.; Zhu, S.; Matalon, S. Identification of nitration sites on surfactant protein A by tandem electrospray mass spectrometry. Arch. Biochem. Biophys. 335: 396-402; 1996.
34.Yi, D.; Smythe, G. A.; Blount, B. C.; Duncan, M. W. Peroxynitrite- mediated nitration of peptides: characterization of the products by electrospray and combined gas chromatography-mass spectrometry. Arch. Biochem. Biophys. 344: 253-9; 1997.
35.MacMillan-Crow, L. A.; Crow, J. P.; Thompson, J. A. Peroxynitrite- mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry, 37: 1613-22; 1998.
36.Batthya´ny, C.; Souza, J. M.; Dura´n, R.; Adriana Cassina, A.; Cerven˜ansky, C.; Radi, R. Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite. Biochemistry, 44: 8038-8046; 2005.
37.Heinecke, J. W.; Hsu, F. F.; Crowley, J. R.; Hazen, S. L.; Leeuwenburgh, C.; Mueller, D. M.; Rasmussen, J. E.; Turk, J. Detecting oxidative modification of biomolecules with isotope dilution mass spectrometry: sensitive and quantitative assays for oxidized amino acids in proteins and tissues. Methods Enzymol. 300: 124-144; 1999.
38.Aulak, K. S.; Miyagi, M.; Yan, L.; West, K. A.; Massillon, D.; Crabb, J. W.; Stuehr, D. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc. Natl. Acad. Sci. U.S.A. 98: 12056-12061; 2001.
39.Ruse, C. I.; Willard B. B.; Jin J. P.; Hass, T.; Kinter, M.; Bond, M. Quantitative dynamics of site-specific protein phosphorylation determined using liquid chromatography electrospray ionization mass spectrometry. Anal. Chem. 74: 1658-1664; 2002.
40. Nelson, D. P.; Kiesow, L. A. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C. Anal. Biochem. 49: 474-478; 1972.
41.Uppu, R. M.; Pryor, W. A. Biphasic synthesis of high concentrations of peroxynitrite using water-insoluble alkyl nitrite and hydrogen peroxide. Method Enzymol. 269: 322-329; 1996.
42.Beckman, J. S.; Chen, J.; Ischiropoulos, H.; Crow, J. P. Oxidative chemistry of peroxynitrite. Method Enzymol. 233: 229-240; 1994.
43.Willard, B. B.; Ruse, C. I.; Keightley, J. A.; Bond, M.; Kinter, M. Site-specific quantitation of protein nitration using liquid chromatography/tandem mass spectrometry. Anal. Chem. 75: 2370 -2376; 2003.
44.Radi, R. Nitric oxide, oxidants, and protein tyrosine nitration, Proc. Natl. Acad. Sci. U.S.A. 101: 4003-4008; 2004.
45.Souza, J. M.; Daikhin, E.; Yudkoff, M.; Raman, C. S.; Ischiropoulos, H. Factors determining the selectivity of protein tyrosine nitration. Arch. Biochem. Biophys. 371: 169-178; 1999.
46.Chen, Y.-R.; Deterding, L. J.; Sturgeon, B. E.; Tomer, K. B.; Mason, R. P. Protein oxidation of cytochrome c by reactive halogen species enhances its peroxidase activity. J. Biol. Chem. 277: 29781-29791; 2002.
47.Ischiropoulos, H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 356: 1-11; 1998.
48.Shishehbor, M. H.; Aviles, R. J.; Brennan, M. L.; Fu, X.; Goormastic, M.; Pearce, G. L.; Gokce, N.; Keaney Jr, J. F.; Penn, M. S.; Sprecher, D. L.; Vita, J. A.; Hazen, S. L. Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA, 289: 1675 -1680; 2003.
49.Farrell, A.-J.; Blake, D.-R.; Palmer, R. M. J.; Moncada, S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann. Rheum. Dis. 51: 1219-22; 1992.
50.van der Vliet, A.; Eiserich, J. P.; Halliwell, B.; Cross, C. E. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. J. Biol. Chem. 272: 7617-7625; 1997.
51.Wu, W.; Chen, Y.; Hazen, S. L. Eosinophil peroxidase nitrates protein tyrosyl residues. J. Biol. Chem. 274: 5933-25944; 1999.
52.van Dalen, C. J.; Winterbourn, C. C.; Senthilmohan, R.; Kettle, A. J. Nitrite as a substrate and inhibitor of myeloperoxidase. J. Biol. Chem. 275: 11638-11644; 2000.
53.Burner, U.; Furtmuller, P.-G.; Kettle, A. J.; Koppenol, W. H.; Obinger, C. Mechanism of reaction of myeloperoxidase with nitrite. J. Biol. Chem. 275: 20597-20601; 2000.
54.Zhang, H.; Bhargava, K.; Kesszler, A.; Feix, J.; Hogg, N.; Joseph, J.; Kalyanaraman, B. Transmembrane nitration of hydrophobic tyrosyl peptides. J. Biol. Chem. 278: 8969-8978; 2003.
55.Hsu, J. L.; Huang, S. Y.; Chow, N. H.; Chen, S. H. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75: 6843- 6852; 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top