|
第一部份 1.Lawley, P. D. Mutagens as carcinogens: Development of current concepts. Mutat. Res. 213: 3-25; 1989. 2.Poirier, M. C.; Beland, F. A. DNA adduct measurements and tumor incidence during chronic carcinogen exposure in animal models: Implications for DNA adduct-based human cancer risk assessment. Chem. Res. Toxicol. 5: 749-755; 1992. 3.Basu, A.K.; Wood, M. L.; Niedernhofer, L. A.; Essigmann, J. M. Mugatenic and genotoxic effects of three vinylchloride-induced DNA lesion: 1,N6-ethenoadenine, 3,N4-ethenocytosine, and 4-amino- 5-(imidazol-2-yl)imidazole. Biochemistry, 32: 12793-12801; 1993. 4.Cheng, K. C.; Preston, B. D.; Cahill, D. S.; Dosanjh, M. K.; Singer, B.; Loeb, L. A. The vinyl chloride DNA derivative N2,3-ethenoguanine produced GàA transitions in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 88: 9974-9978; 1991. 5.Palejwala, V. A.; Simga, D.; Humayun, M. A. Mechanisms of mutagenesis by exocyclic DNA adducts, transfection of M13 viral DNA bearing a site-specific adducts shows that ethenocytosine is a highly efficient recA-independent mutagenic noninstructional lesion. Biochemistry, 30: 8736-8741; 1991. 6.Fernando, R. C.; Nair, J.; Barbin, A.; Miller, J. A.; Bartsch, H. Detection of 1,N6-ethenodeoxyadenosine and 3,N4-etheno¬-¬¬deoxy¬cytidine by immunoaffinity/ 32P-postlabelling in liver and lung DNA of mice treated with ethyl carbamate (urethane) or its metabolites. Carcinogenesis, 17: 1711-1718; 1996. 7.Battaglia, R.; Conacher, H. B. S.; Page, B. D. Ethyl carbamate (urethane) in alcoholic beverages and foods: a review. Food Addit. Contam. 7: 477-496; 1990. 8.Ough, C. S. Ethyl carbamate in fermented beverages and foods. I. Naturally occurring ethyl carbamate. J. Agric. Food Chem. 24: 323- 328; 1976. 9.Laib, R. J. The role of cyclic base adducts in vinyl- chlorideinduced carcinogenesis: studies on nucleic acid alkylation in vivo. In The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis (Singer, B., and Bartsch, H., Eds.) ; 1986: 101-108, IARC Sci. Publ., 70, Oxford University Press, London. 10.Nair, J.; Barbin, A.; Velic, I.; Bartsch, H. Etheno DNAbase adducts from endogenous reactive species. Mutat. Res. 424: 59-69; 1999. 11.Chen, H.-J. C.; Chung, F.-L. Epoxidation of trans-4- hydroxy-2- nonenal by fatty acid hydroperoxides and hydrogen peroxide. Chem. Res. Toxicol. 9: 306-312; 1996. 12.Lee, S. H.; Oe, T.; Blair, I. A. Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science, 292: 2083- 2086; 2001. 13.Gedigk, P.; Muller, R.; Bechtelshelimer, H. Moephology of liver damage among polyvinyl chloride production workers. A report on 51 cases. Ann. N. Y. Acad. Sci. 246: 278-285; 1975. 14.Buffler, P. A.; Wood, S.; Eifler, C.; Suarez, L.; Kilian, D. J. Mortality experience of workers in a vinyl chloride monomer production plant. J. Occup. Med. 21: 195-203; 1979. 15.Guengerich, F. P. Roles of the vinyl chloride oxidation products 2-chlorooxiranes and 2-chloroacetaldehyde in the vitro formation of etheno adducts of nucleic acid bases Chem. Res. Toxicol.5: 2-5; 1992. 16.Zajdela, F.; Croisy, A.; Barbin, A.; Malaveille, C.; Tomatis, L.; Bartsch, H. M. Carcinogenicity of chloroethylene oxide, an ultimate reactive metabolite of vinyl chloride, and bis(chloromethyl)ether after subcutaneous administration and in initiation-promotion experiments in mice. Cancer Res., 40: 352-356; 1980. 17.Esterbauer, H.; Schaur, R. J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic. Biol. Med., 11: 81-128; 1991. 18.Wu, H. -Y.; Lin, J. -K. Determination of aldehydic lipid peroxidation products with dabsylhydrazine by high-performance liquid chromatography. Anal. Chem. 67: 1603-1612; 1995. 19.Chen, H. -J. C.; Chung, F. -L. Epoxidation of trans-4-hydroxy- 2-nonenal by fatty acid hydroperoxides and hydrogen peroxide. Chem. Res. Toxical. 9: 306-312; 1996. 20.Chen, H. -J. C.; Chung, F. -L. Formation of etheno adducts in reactions of enals via autoxidation. Chem. Res. Toxical. 7: 857-860; 1994. 21.Chen, H. -J. C.; Gonzalez. Shou, M.; Chung, F. -L. 2,3-Epoxy-4- hydroxynonanal, a potential lipid peroxidation product for etheno adduct formation, is not a substrate of human epoxide hydrolase. Carcinogenesis, 19: 939-943; 1998. 22.Sodum, R. S.; Chung, F. -L. Structural characterization of adducts formed in the reaction of 2,3-epoxy-4-hydroxynonanal with deoxyguanosine. Chem. Res. Toxicol. 2: 23-28; 1989. 23.Sodum, R. S.; Chung, F. -L. Stereoselective formation of in vitro nucleic acid adducts by 2,3-epoxy-4-hydroxynonanal. Cancer Res. 51: 137-143; 1991. 24.Chung, F. -L.; Chen, H. -J. C.; Guttenplan, J. B.; Nishikawa, A.; Hard, G. C. 2,3-Epoxy-4-hydroxynonanal as a pontential tumor-initiating agent of lipid peroxidation. Carcinogenesis, 14: 2073-2081; 1993. 25.Sodum, R. S.; Chung, F. -L. 1,N2-Ethenodeoxyguanosine as a potential marker for DNA adduct formation by trans-4-hydroxy- 2-nonenal. Cancer Res. 48: 320-326; 1988. 26.Nair, V.; Offerman, R. J. Ring-extended products from the reaction of epoxy carbonyl compounds and nucleic acid bases. J. Org. Chem. 50: 5627-5632; 1985 27.Jones, W. R.; Dedon, P. C. DNA oxidation as a source of endogenous electrophiles: Formation of ethenoadenine adducts in g-irradiated DNA. J. Am. Chem. Soc., 121: 9231-9232; 1999. 28.Nair, J.; Barbin, A.; Guichard, Y.; Bartsch, H. 1,N6-Etheno- deoxyadenosine and 3,N4-ethenodeoxycytidine in liver DNA from humans and untreated rodents detected by immunoaffinity/ 32P-postlabeling. Carcinogenesis, 16: 613-617; 1995. 29.Chung, F.-L.; Chen, H.-J. C.; Nath, R. G. Lipid peroxidation as a potential endogenous source for the formation of exocyclic DNA adducts: a commentary. Carcinogenesis, 17: 2105-2111; 1996. 30.Nair, J.; Sone, H.; Nagao, M.; Barbin, A.; Bartsch, H. Copper- dependent formation of miscoding etheno-DNA adducts in the liver of Long Evans Cinnamon (LEC) rats developing hereditary hepatitis and hepatocellular carcinoma. Cancer Res. 56: 1267-1271; 1996. 31.Nair, J.; Carmichael, P. L.; Fernando, R. C.; Phillips, D. H.; Strain, A. J.; Bartsch, H. Lipid peroxidation-induced etheno- DNA adducts in the liver of patients with the genetic metal storage disorders Wilson’s disease and primary hemochromatosis. Cancer Epidemiol. Biomarkers Prev. 7: 435-440; 1998. 32.Nair, J.; Vaca, C. E.; Velic, I.; Mutanen, M.; Valsta, L. M.; Bartsch, H. High dietary omega-6 polyunsaturated fatty acids drastically increase the formation of etheno-DNA base adducts in white blood cells of female subjects. Cancer Epidemiol. Biomarkers Prev. 6: 597-601; 1997. 33.Schmid, K.; Nair, J.; Winde, G.; Velic, I.; Bartsch, H. Increased levels of promutagenic etheno-DNA adducts in colonic polyps of FAP patients. Int. J. Cancer. 87: 1-4; 2000. 34.Nair, J.; Gal, A.; Tamir, S.; Tannenbaum, S. R.; Wogan, G. N.; Bartsch, H. Etheno adducts in spleen DNA of SJL mice stimulated to overproduce nitric oxide. Carcinogenesis, 19: 2081- 2084; 1998. 35.Ohshima, H.; Bartsch, H. Chronic infections and inflammatory processes as cancer risk factors: Possible role of nitric oxide in carcinogenesis. Mutat. Res. 305: 253-264; 1994. 36.Bartsch, H.; Nair, J. New DNA-based biomarkers for oxidative stress and cancer chemoprevention studies. Eur. J. Cancer. 36: 1229-1234; 2000. 37.Dizdaroglu, M.; Gajewski, E. Selected-ion mass spectrometry: Assays of oxidative DNA damage. Methods Enzymol. 186: 530-544; 1990. 38.Giese, R. W. Detection of DNA adducts by electron capture mass spectrometry. Chem. Res. Toxicol. 10: 255-270; 1997. 39.Chen, H.-J. C.; Zhang, L.; Cox, J.; Cunningham, J. A.; Chung, F.-L. DNA adducts of 2,3-epoxy-4-hydroxynonanal: Detection of 7-(1’,2-dihydroxy-heptyl)-3H-imidazo[2,1,i ]-purine and 1,N6- ethenoadenine by gas chromatography/negative ion chemical ionization/mass spectrometry. Chem. Res. Toxicol. 11: 1474-1480; 1998. 40.Chen, H.-J. C.; Lin, T.-C.; Hong, C.-L.; Chiang, L.-C. Analysis of 3,N4-ethenocytosine in DNA and in human urine by isotope dilution gas chromatography/negative ion chemical ionization/mass spectrometry. Chem. Res. Toxicol. 14: 1612-1619; 2001. 41.Fedtke, N.; Boucheron, J. A.; Walker, V. E.; Swenberg, J. A. Vinyl chloride-induced DNA adducts. II: Formation and persistence of 7-(2’-oxoethyl)guanine and N2,3-ethenoguanine in rat tissue DNA. Carcinogenesis, 11: 1287-1292; 1990. 42.Ham, A. J.; Ranasinghe, A.; Morinello, E. J.; Nakamura, J.; Upton, P. B.; Johnson, F.; Swenberg, J. A. Immunoaffinity/gas chromatography/ high-resolution mass spectrometry method for the detection of N2,3-ethenoguanine. Chem. Res. Toxicol. 12: 1240-1246; 1992. 43.Morinello, E. J.; Ham, A.-J. L.; Ranasinghe, A.; Sangaiah, R.; Swenberg, J. A. Simultaneous quantitation of N2,3-ethenoguanine and 1,N2-ethenoguanine with an immunoaffinity/ gas chromatography/high-resolution mass spectrometry assay. Chem. Res. Toxicol. 14: 327-334; 2001. 44.Matijasevie, Z.; Sekiguchi, M.; Ludlum, D. B. Release of N2,3-ethenoguanine from chloroacetaldehyde-treated DNA by Escherichia coli 3-methyladenine DNA glycosylase II. Proc. Natl. Acad. Sci. U.S.A., 89: 9331-9334; 1992. 45.Saparbaev, M.; Laval, J. 3,N4-Ethenocytosine, a highly mutagenic adduct, is a primary substrate for Escherichia coli double-stranded uracil-DNA glycosylase and human mismatch-specific thymine-DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A., 95: 8508-8513; 1998. 46.Hang, B.; Medina, M.; Fraenkel-Conrat, H.; Singer, B. A 55-kDa protein isolated from human cells shows DNA glycosylase activity toward 3,N4-ethenocytosine and the G/T mismatch. Proc. Natl. Acad. Sci. U.S.A., 95: 13561-13566; 1998. 47.Sancar, A. Mechanisms of DNA excision repair. Science, 266: 1954- 1956; 1994. 48.Holt, S.; Yen, T. Y.; Sangaiah, R.; Swenberg, J. A. Detection of 1,N6-ethenoadenine in rat urine after chloroethylene oxide exposure. Carcinogenesis, 19: 1763-1769; 1998. 49.Kadlubar, F. F.; Anderson, K. E.; Haussermann, S.; Lang, N. P.; Barone, G. W.; Thompson, P. A.; MacLeod, S. L.; Chou, M. W.; Mikhailova, M.; Plastaras, J.; Marnett, L. J.; Nair, J.; Velic, I.; Bartsch, H. Comparison of DNA adduct levels associated with oxidative stress in human pancreas. Mutat. Res. 405: 125-133; 1998. 50.Godschalk, R.; Nair, J.; van Schooten, F. J.; Risch, A.; Drings, P.; Kayser, K.; Dienemann, H.; Bartsch, H. Comparison of multiple DNA adduct types in tumor adjacent human lung tissue: effect of cigarette smoking. Carcinogenesis, 23: 2081-2086; 2002. 51.Hanaoka, T.; Nair, J.,; Takahashi, Y.; Sasaki, S.; Bartsch, H.; Tsugane, S. Urinary level of 1,N6-ethenodeoxyadenosine, a marker of oxidative stress, is associated with salt excretion and omega 6-polyunsaturated fatty acid intake in postmenopausal Japanese women. Int. J. Cancer, 100: 71-75; 2002. 52.Chen, H.-J. C.; Chiu, W.-L. Detection and quantification of 1,N6-ethenoadenine in human urine by stable isotope dilution capillary gas chromatography/negative ion chemical ionization/mass spectrometry. Chem. Res. Toxicol. 16: 1099-1106; 2003. 53.Yen, T.-Y.; Holt, S.; Sangaiah, R.; Gold, A.; Swenberg, J. A. Quantitation of 1,N6-ethenoadenine in rat urine by immunoaffinity extraction combined with liquid chromatography/ electrospray ionization mass spectrometry. Chem. Res. Toxicol. 11: 810-815; 1998. 54.Chen, H.-J. C.; Chiang, L.-C.; Tseng, M.-C.; Zhang, L. L.; Ni, J.; Chung, F.-L. Detection and quantification of 1,N6- ethenoadenine in human placental DNA by mass spectrometry. Chem. Res. Toxicol. 12: 1119-1126; 1999. 55.Doerge, D. R.; Churchwell, M. I.; Fang, J.-L.; Beland, F. A. Quantification of etheno-DNA adducts using liquid chromatography, on-line sample processing, and electrospray tandem mass spectrometry. Chem. Res. Toxicol. 13: 1259-1264; 2000. 56.Churchwell, M. I.; Beland, F. A.; Doerge, D. R. Quantification of multiple DNA adducts formed through oxidative stress using liquid chromatography and electrospray tandem mass spectrometry. Chem. Res. Toxicol. 15: 1295-1301; 2002. 57.Loureiro, A. P. M.; Marques, S. A.; Garcia, C. C. M.; Di Mascio, P.; Medeiros, M. H. G. Development of an on-line liquid chromatography-electrospray tandem mass spectrometry assay to quantitatively determine 1,N2-etheno-2’-deoxyguanosine in DNA. Chem. Res. Toxicol. 15: 1302-1308; 2002. 58.Frelon, S.; Douki, T.; Ravanat, J.-L.; Pouget, J.-P.; Tornabene, C.; Cadet, J. High-performance liquid chromatography tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA. Chem. Res. Toxicol. 13: 1002-1010; 2002. 59.Rouzer, C. A.; Chaudhary, A. K.; Nokubo, M.; Ferguson, D. M.; Reddy, G. R.; Blair, I. A.; Marnett, L. J. Analysis of the malondialdehyde-2’-deoxyguanosine adduct pyrimidopurinone in human leukocyte DNA by gas chromatography/electron capture/ negative chemical ionization/mass spectrometry. Chem. Res. Toxicol. 10: 181-188; 1997. 60.International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. 38: Tobacco Smoking, International Agencyfor Research on Cancer, Lyon, France. 1986 61.Morrow, J. D.; Frei, B.; Longmire, A. W.; Gaziano, J. M.; Lynch, S. M.; Shyr, Y.; Strauss, W. E.; Oates, J. A.; Roberts, L. J. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N. Engl. J. Med. 332, 1198-1203; 1995. 62.Phillips, D. H.; Hewer, A.; Martin, C. N.; Garner, R. C.; King, M. M. Correlation of DNA adduct levels in human lung with cigarette smoking. Nature, 336: 790-79; 1988. 63.Bogdanov, M. B.; Beal, M. F.; McCabe, D. R.; Griffin, R. M.; Matson, W. R. A carbon column-based liquid chromatography electrochemical approach to routine 8-hydroxy-2’-deoxyguanosine measurements in urine and other biologic matrices: a one-year evaluation of methods. Free Radical Biol. Med. 27: 647-666; 1999. 64.Weimann, A.; Belling, D.; Poulsen, H. E. Quantification of 8-oxo- guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography-electrospray tandem mass spectrometry. Nucleic Acids Res. 30: 7e; 2002. 65.Heinegard, D.; Tiderstrom, G. Determination of serum creatinine by a direct colorimetric method. Clin. Chim. Acta. 43: 305-310; 1973. 66.Bianchini, F.; Donato, F.; Faure, H.; Ravanat, J. L.; Hall, J.; Cadet, J. Urinary excretion of 5-(hydroxymethyl) uracil in healthy volunteers: Effect of active and passive tobacco smoke. Int. J. Cancer 77: 40-46; 1998. 第二部分 1.Koppnol, W. H.; Moreno, J. J.; Pryor, W. A.; Ischiropoulos, H.; Beckman, J. S. Peroxynitrite, a clocked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5: 834-842; 1992. 2.Ischiropoulos, H.; Zhu, L.; Beckman, J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 298: 446-451; 1992. 3.Lemecier, J. N.; Squadrito, G. L.; Pryor, W. A. Spin trap studies on the decomposition of peroxynitrite. Arch. Biochem. Biophys. 321: 31-39; 1995. 4.Beckman, J. S.; Beckman T. W.; Chen, J.; Marshall, P. A.; Freeman, B., Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U.S.A. 87: 1620-1624; 1990. 5.Marla, S. S.; Lee, J.; Groves, J. T. Peroxynitrite rapidly permeates phospholipid membranes. Proc. Natl. Acad. Sci. U.S.A. 94: 14243- 14248; 1997. 6.Denicola, A.; Souza, J. M.; Radi, R. Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl. Acad. Sci. U.S.A. 95: 3566-3571; 1998. 7.Ischiropoulos, H.; Zhu, L.; Chen, J.; Tsai, M.; Martin, J. C.; Smith, C. D.; Beckman, J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298: 431-437; 1992. 8.Burney, S.; Caulfield, J. L.; Niles, J. C.; Wishnok, J. S.; Tannenbaum, S. R. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat. Res. 424: 37-49; 1999. 9.Yermilov, V.; Rubio, J.; Ohshima, H. Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett. 376: 207-210; 1995. 10. van der Vliet, A.; Eiserich, J. P.; Halliwell, B.; Cross, C. E. Formation of reaction nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J. Am. Chem. Soc. 272: 7617-7625; 1997. 11. Eiserich, J. P.; Hristova, M.; Cross, C. E.; Jones, A. D.; Freeman, B. A.; Halliwell, B.; van der Vliet, A. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutropphils. Nature, 391: 393-397; 1998. 12. Farrell, A. J.; Blake, D. R.; Palmer, R. M.; Moncada, S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann. Rheum. Dis. 51: 1219-1222; 1992. 13. Eiserich, J. P.; Cross, C.E.; Jones, A. D.; Halliwell, B.; van der Vliet, A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J. Biol. Chem. 271: 19199-19208; 1996. 14. Whiteman, M.; Spencer, J. P.; Jenner, A.; Halliwell, B. Hypochlorous acid-induced DNA base modification: Potentiation by nitrite: Biomarkers of DNA damage by reactive oxygen species. Biochem. Biophys. Res. Comm. 257: 572-576; 1999. 15. Byun, J.; Henderson, J. P.; Mueller, D.M.; Heinecke, J. W. 8-Nitro-2'- deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase-hydrogen peroxide- nitrite system of activated human phagocytes. Biochemistry, 38: 2590-2600; 1999. 16. Schmitt, D.; Shen, Z.; Zhang, R.; Colles, S. M.; Wu, W.; Salomon, R. G.; Chen, Y.; Chisolm, G. M.; Hazen, S. L. Leukocytes utilize myeloperoxidase-generated nitrating intermediates as physiological catalysts for the generation of biologically active oxidized lipids and sterols in serum. Biochemistry, 38: 16904-16915; 1999. 17. Panasenko, O. M.; Briviba, K.; Klotz, L. O.; Sies, H. Oxidative modification and nitration of human low-density lipoproteins by the reaction of hypochlorous acid with nitrite. Arch. Biochem. Biophys. 343: 254-259; 1997. 18. Ohshima, H.; Yoshie, Y.; Auriol. S.; Gilibert, I. Antioxidant and pro-oxidant actions of flavonoids: effects on DNA damage induced by nitric oxide, peroxynitrite, and nitroxyl anion. Free Radic. Biol. Med. 25: 1057-1065; 1998. 19. Tuo, J.; Liu, L.; Poulsen, H. E.; Weimann, A.; Svendsen, O.; Loft, S. Importance of guanine nitration and hydroxylation in DNA in vitro and in vivo. Free Radic. Biol. Med. 29: 147-155; 2000. 20. Chen, H.-J. C.; Chen, Y.-M.; Wang, T.-F.; Wang, K.-S.; Shiea, J. 8-Nitroxanthine, an adduct derived from 2'-deoxyguanosine or DNA reaction with nitryl chloride, Chem. Res. Toxicol., 14: 536-546; 2001. 21. Hsieh, Y. S.; Wang, H. C.; Tseng, T. H.; Chang, W. C.; Wang, C. J. Gaseous nitric oxide-induced 8-nitroguanine formation in human lung fibroblast cells and cell-free DNA. Toxicol. Appl. Pharmacol. 172: 210-216; 2001. 22. Chen, H-J. C.; Wang, T.-F.; Chen, Y.-M. Role of nitrite on nitration of 2’-deoxyguanosine by nitryl chloride. J. Chin. Chem. Soc. 49: 275-281; 2002. 23. Ohshima, H.; Bartsch, H. Chronic inflection and inflammatory processed as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mut. Res. 305: 253-264; 1994. 24. Szabo, C.; Ohshima, H. DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide, 1: 373-385; 1997. 25. Kamisaki, Y.; Wada, K.; Bian, K.; Balabanli, B.; Davis, K.; Martin, E.; Behbod, F.; Lee, Y. C.; Murad, F. An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc. Natl. Acad. Sci. USA. 95: 11584-11589; 1998. 26. Kuo, W. N.; Kanadia, R. N.; Shanbhag, V. P.; Toro, R. Denitration of peroxynitrite-treated proteins by “protein nitratases” from rat brain and heart. Mol. Cell Biochem. 201: 11-16; 1999. 27. Kuo, W. N.; Kanadia, R. N.; Shanbhag, V. P. Denitration of peroxynitrite-treated proteins by “protein nitratases” from dog prostate. Biochem. Mol. Biol. Int. 47: 1061-1067; 1999. 28. Lightfoot, R. T.; Shuman, D.; Ischiropoulos, H. Oxygen- insensitive nitroreductases of Escherichia coli do not reduce 3-nitrotyrosine. Free Radic. Biol. Med. 28: 1132-1136; 2000. 29. Chen, H.-J. C.; Chen, Y.-M.; Chang, C.-M. Lipoyl dehydrogenase catalyzed reduction of nitrated DNA and protein adducts using dihydrolipoic acid or ubiquinol as cofactor. Chem. Biol. Interact. 140: 199-213; 2002. 30. Balabanli, B.; Kamisaki, Y.; Martin, E.; Murad, F. Requirements for heme and thiols for the nonenzymatic modification of nitrotyrosin. Proc. Natl. Acad. Sci. USA. 96: 13136-13141; 1999. 31. Bunn, H. F.; Forget, B. G. in: Hemoglobin. Mol. Gen. Clin. Aspects, Philadelphia: Saunders; 1986: 634-662. 32. Faivre, B.; Menu, P.; Labrude, P.; Vigneron, C. Hemoglobin autooxidation/oxidation mechanisms and methemoglobin prevention or reduction processes in the bloodstream. Literature review and outline of autooxidation reaction. Art. Cells, Blood Sub. Immo. Biotech. 26: 17-26; 1998. 33. Nelson, D. P.; Kiesow, L. A. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C. Anal. Biochem. 49: 474-478; 1972. 34.Uppu, R. M.; Pryor, W. A. Biphasic synthesis of high concentrations of peroxynitrite using water-insoluble alkyl nitrite and hydrogen peroxide. Method Enzymol. 269: 322-329; 1996. 35.Beckman, J. S.; Chen, J.; Ischiropoulos, H.; Crow, J. P. Oxidative chemistry of peroxynitrite. Method Enzymol. 233: 229-240; 1994. 36. Sodum, R. S.; Nie, G.; Fiala, E. S. 8-Aminoguanine: a base modification produced in rat liver nucleic acids by the hepatocarcinogen 2-nitropropane. Chem. Res. Toxicol. 6: 269-276; 1993. 37. Forman, H. J.; Azzi, A. On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB J. 11: 374-375; 1997. 38. Faivre, B.; Menu, P.; Labrude, P.; Vigneron, C. Hemoglobin autoxidation/oxidation mechanisms and methemoglobin prevention or reduction processes in the bloodstream. Literature review and outline of autoxidation reaction. Art. Cells Blood Sub. Immo. Biotech. 26: 17-26; 1998. 39. Antonini, E.; Wyman, J.; Brunori, M.; Taylor, J. F.; Rossi-Fanelli, A.; Caputo, A. Studies on the oxidation-reduction potentials of heme Proteins. I. human hemoglobin. J. Biol. Chem. 239: 907-912; 1964. 40. Shifman, J. M.; Gibney, B. R.; Sharp, R. E.; Dutton, P. L. Heme redox potential control in de novo designed four-a-helix bundle proteins. Biochemistry, 39: 14813-14821; 2000. 41. Rodriguez, J. C.; Rivera, M. Conversion of mitochondrial cytochrome b5 into a species capable of performing the efficient coupled oxidation of heme. Biochemistry, 37: 13082-13090; 1998. 42. Lo, S. C.; Aft, R.; Mueller, G. C. Role of nonhemoglobin heme accumulation in the terminal differentiation of friend erythroleukemia cells. Cancer Res. 41: 864-870; 1981. 43. Ross, J.; Sautner, D. Induction of globin mRNA accumulation by hemin in cultured erythroleukemic cells. Cell, 8: 513-520; 1976. 44. Ishii, D. N.; Maniatis, G. M. Hemin promotes rapid neurite outgrowth in cultured mouse neuroblastoma cells. Nature, 274: 372-374; 1978. 45. Chen, J. J.; London, I. M. Hemin enhances the differentiation of mouse 3T3 cells to adipocytes. Cell, 26: 117-122; 1981. 46. Skulachev, V. P. Membrane bioenergetics. Berlin: Springer; 1988. 47. Skulachev, V. P. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett. 423: 275-280; 1998. 48. Korshunov, S. S.; Krasnikov, B. F.; Pereverzev, M. O.; Skulachev, V. P. The antioxidant functions of cytochrome c. FEBS Lett. 462: 192-198; 1999. 49. Winterbourn, C. C. Free radical production and oxidative reactions of hemoglobin. Environ. Health Perspect. 64: 321-330; 1985. 50. Constantinescu, A.; Han, D.; Packer, L. Vitamin E recycling in human erythrocyte membranes. J. Biol. Chem. 268: 10906 -10913; 1993. 51. Xu, D. P.; Wells, W. W. Alpha-lipoic acid-dependent regeneration of ascorbic acid from dehydroascorbic acid in rat liver mitochondria. J. Bioenerg. Biomembr. 28: 77-85; 1996. 52. Han, D.; Handelman, G.; Marcocci, L.; Sen, C. K.; Roy, S.; Kobuchi, H.; Tritschler, H. J.; Flohe, L.; Packer, L. Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors. 6: 321-338; 1997. 53. Kozlov, A. V.; Gille, L.; Staniek, K.; Nohl, H. Dihydrolipoic acid maintains ubiquinone in the antioxidant active form by twoelectron reduction of ubiquinone and one-electron reduction of ubisemiquinone. Arch. Biochem. Biophys. 363: 148-154; 1999. 54. Romero, F. J.; Ordonez, I.; Arduini, A.; Cadenas, E. The reactivity of thiols and disulfides with different redox states of myoglobin. Redox and addition reactions and formation of thiyl radical intermediates. J. Biol. Chem. 267: 1680-1688; 1992. 55. Meister, A. On the antioxidant effects of ascorbic acid and glutathione. Biochem. Pharmacol. 44: 1905-1915; 1992. 56. Huang, M.-T.; Ferraro, T. Phenolic compounds in food and cancer prevention. In: Ho, C.-T., ed. Phenolic compounds in food and their effects on health II. Antioxidants and Cancer Prevention. Washington, DC: The American Chemical Society; 1992: 8-33. 57. Kiese, M. Methemoglobinemia: a comprehensive treatise. Cleveland, OH: CRC Press; 1974. 58. Dershwitz, M.; Novak, R. F. Generation of superoxide via the interaction of nitrofurantoin with oxyhemoglobin. J. Biol. Chem. 257: 75-79; 1982. 59. Krainev, A. G.; Williams, T. D.; Bigelow, D. J. Enzymatic reduction of 3-nitrotyrosine generates superoxide. Chem. Res. Toxicol. 11: 495-502; 1998. 60. Chen, H.; Tini, M.; Evans, R. M. HATs on and beyond chromatin. Curr. Opinion Cell Biol. 13: 218-224; 2001. 61. Bhat, G. J.; Padmanaban, G. Heme is a positive regulator of cytochrome P-450 gene transcription. Arch. Biochem. Biophys. 264: 584-590; 1988. 62. Carr, A.; Biggin, M. D. A comparison of in vivo and in vitro DNA-binding specificities suggests a new model for homeoprotein DNA binding in Drosophila embryos. EMBO J. 18: 1598-1608; 1999. 63. Richter, C.; Park, J. W.; Ames, B. N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85: 6465-6467; 1988. 64. Giulivi, C.; Poderoso, J. J.; Boveris, A. Production of nitric oxide by mitochondria. J. Biol. Chem. 273: 11038-11043; 1998. 65. Brown, G. C. Nitric oxide and mitochondrial respiration. Biochim. Biophys. Acta. 1411: 351-369; 1999. 66. Boveris, A.; Costa, L. E.; Poderoso, J. J.; Carreras, M. C.; Cadenas, E. Regulation of mitochondrial respiration by oxygen and nitric oxide. Ann. NY Acad. Sci. 899: 121-135; 2000. 67. Ballinger, S. W.; Bouder, T. G.; Davis, G. S.; Judice, S. A.; Nicklas, J. A.; Albertini, R. J. Mitochondrial genome damage associated with cigarette smoking. Cancer Res. 56: 5692-5697; 1996. 68. 2-Nitropropane. IPCS Environmental Health Criteria 138, World Health Organization. Geneva: Switzerland; 1992. 69. Hoffmann, D.; Rathkamp, G. Chemical studies on tobacco smoke. III. Primary and secondary nitroalkanes in cigarette smoke. Beitr. Tabakforsch. 4: 124-134; 1968. 70. Conaway, C. C.; Nie, G.; Hussain, N. S.; Fiala, E. S. Comparison of oxidative damage to rat liver DNA and RNA by primary nitroalkanes, secondary nitroalkanes, cyclopentanone oxime, and related compounds. Cancer Res. 51: 3143-3147; 1991. 71. Sodum, R. S.; Sohn, O. S.; Nie, G.; Fiala, E. S. Activation of the liver carcinogen 2-nitropropane by aryl sulfotransferase. Chem. Res. Toxicol. 7: 344-351; 1994. 72. Sodum, R. S.; Fiala, E. S. Amination of tyrosine in liver cytosol protein of male F344 rats treated with 2-nitropropane, 2-nitrobutane, 3-nitropentane, or acetoxime. Chem. Res. Toxicol. 10: 1420-1426; 1997. 73. Venkatarangan, L.; Sivaprasad, A.; Johnson, F.; Basu, A. K. Site-specifically located 8-amino-2'-deoxyguanosine: thermodynamic stability and mutagenic properties in. Escherichia coli. Nucleic Acids. Res. 29: 1458-1463; 2001. 74. Soliva, R.; Guimil Garcia, R.; Blas, J. R.; Eritja, R.; Asensio, J. L.; Gonzalez, C.; Luque, F. J.; Orozco, M. DNA-triplex stabilizing properties of 8-aminoguanine. Nucleic Acids. Res. 28: 4531-4539; 2000. 75. Tan, X.; Suzuki, N.; Johnson, F.; Grollman, A. P.; Shibutani, S. Mutagenic properties of the 8-amino-2'-deoxyguanosine DNA adduct in mammalian cells. Nucleic Acids. Res. 27: 2310-2314; 1999. 76. Norman, V.; Keith, C. H. Nitrogen oxides in tobacco. Nature, 205: 915-918; 1965. 77. Lin, J. K.; Chen, K. J.; Liu, G. Y.; Chu, Y. R.; Lin-Shiau, S. Y. Nitration and hydroxylation of aromatic amino acid and guanine by the air pollutant peroxyacetyl nitrate. Chem. Biol. Interact. 127: 219-236; 2000. 78. Hsieh, Y. S.; Chen, B. C.; Shiow, S. J.; Wang, H. C.; Hsu, J. D.; Wang, C. J. Formation of 8-nitroguanine in tobacco cigarette smokers and in tobacco smoke-exposed Wistar rats. Chem. Biol. Interact. 140: 67-80; 2002. 79. Masuda, M.; Nishino, H.; Ohshima, H. Formation of 8-nitroguanosine in cellular RNA as a biomarker of exposure to reactive nitrogen species. Chem. Biol. Interact. 139:187-197; 2002. 第三部分
1.Ohshima, H.; Bartsch, H. Chronic inflection and inflammatory processed as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mut. Res. 305: 253-264; 1994. 2.Koppnol, W. H.; Moreno, J. J.; Pryor, W. A.; Ischiropoulos, H.; Beckman, J. S. Peroxynitrite, a clocked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5: 834-842; 1992. 3.Ischiropoulos, H.; Zhu, L.; Beckman, J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 298: 446-451; 1992. 4.Gordon, L.; Weitzman, S. A. Inflammation and Cancer, Cancer J. 6: 257-261; 1993. 5.Lemecier, J. N.; Squadrito, G. L.; Pryor, W. A. Spin trap studies on the decomposition of peroxynitrite. Arch. Biochem. Biophys. 321: 31-39; 1995. 6.Beckman, J. S.; Beckman T. W.; Chen, J.; Marshall, P. A.; Freeman, B., Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U.S.A. 87: 1620-1624; 1990. 7.Marla, S. S.; Lee, J.; Groves, J. T. Peroxynitrite rapidly permeates phospholipid membranes. Proc. Natl. Acad. Sci. U.S.A. 94: 14243- 14248; 1997. 8.Denicola, A.; Souza, J. M.; Radi, R. Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl. Acad. Sci. U.S.A. 95: 3566-3571; 1998. 9.Yermilov, V.; Yoshie, Y.; Rubio, J.; Ohshima, H. Effects of carbon dioxide/ bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by peroxynitrite. FEBS Lett. 399: 67-70; 1996. 10.Burney, S.; Caulfield, J. L.; Niles, J. C.; Wishnok, J. S.; Tannenbaum, S. R. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat. Res. 424: 37-49; 1999. 11.Yermilov, V.; Rubio, J.; Ohshima, H. Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett. 376: 207-210; 1995. 12.Ischiropoulos, H.; Zhu, L., Chen, J.; Tsai, M.; Martin, J. C.; Smith, C. D.; Beckman, J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298: 431-437; 1992. 13.Castro, L.; Eiserich, J. P.; Sweeney, S.; Radi, R.; Freeman, B. A. Cytochrome c: catalyst and target of nitrite-hydrogen peroxide- dependent protein nitration. Arch. Biochem. Biophys. 421: 99-107; 2004. 14.Kilinc, K.; Kilinc, A.; Wolf, R. E.; Grisham, M. B. Myoglobin-catalyzed tyrosine nitration: no need for peroxynitrite. Biochem. Biophys. Res. Commun. 285: 273-6; 2001. 15.Herold, S. Nitrotyrosine, dityrosine, and nitrotryptophan formation from metmyoglobin, hydrogen peroxide, and nitrite. Free Radic. Biol. Med. 36: 565-579; 2004. 16.Grzelak, A.; Balcerczyk A.; Mateja, A.; Bartosz, G. Hemoglobin can nitrate itself and other proteins. Biochimica. et Biophysica. Acta. 1528: 97-100; 2001. 17.MacMillan-Crow, L. A.; Crow, J. P.; Kerby, J. D.; Beckman, J. S.; Thompson, J. A. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc. Natl. Acad. Sci. U.S.A. 93: 11853-11858; 1996. 18.Guo, W.; Adachi, T.; Matsui, R.; Xu, S.; Jiang, B.; Zou, M. H.; Kirber, M.; Lieberthal, W.; Cohen, R. A. Quantitative assessment of tyrosine nitration of manganese superoxide dismutase in angiotensin II-infused rat kidney. Am. J. Physiol. 285: H1396-H1403; 2003. 19.Cassina, A. M.; Hodara, R.; Souza, J. M.; Thomson, L.; Castro, L.; Ischiropoulos, H.; Freeman, B. A.; Radi, R. Cytochrome c nitration by peroxynitrite. J. Biol. Chem. 275: 21409-21415; 2000. 20.Vadseth, C.; Souza, J. M.; Thomson, L.; Seagraves, A.; Nagaswami, C.; Scheiner, T.; Torbet, J.; Vilaire, G.; Bennett, J. S.; Murciano, J. C.; Muzykantov, V.; Penn, M. S.; Hazen, S. L.; Weisel, J. W.; Ischiropoulos, H. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J. Biol. Chem. 279: 8820-8826; 2004. 21.Halliwell, B.; Zhao, K.; Whiteman, M. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic. Res. 31: 651-669; 1999. 22.Radi, R.; Cassina, A.; Hodara, R.; Quijano, C.; Castro, L. Peroxynitrite reactions and formation in mitochondria, Free Radic. Biol. Med. 33: 1451-1464; 2002. 23.Gebicka, L.; Didik, J. Mechanism of peroxynitrite interaction with cytochrome c. Acta. Biochim. Pol. 50: 815-23; 2003. 24.Chen, Y. R.; Deterding, L. J.; Sturgeon, B. E.; Tomer, K. B.; Mason, R. P. Protein oxidation of cytochrome c by reactive halogen species enhances its peroxidase activity. J. Biol. Chem. 277: 29781-29791; 2002. 25.Jiang, X.; Wang, X. Cytochrome c-mediated apoptosis, Annu. ReV. Biochem. 73: 87-106; 2004. 26.Nantes, I. L.; Zucchi, M. R.; Nascimento, O. R.; Faljoni-Alario, A. Effect of heme iron valence state on the conformation of cytochrome c and its association with membrane interfaces. A CD and EPR investigation. J. Biol. Chem. 276: 153-158; 2001. 27.Vanneste, W. H. Molecular proportion of the fixed cytochrome c components of the respiratory chain of Keilin-Hartree particles and beef heart mitochondria. Biochim. Biophys. Acta. 113: 175-178; 1996. 28.Sokolovsky, M.; Aviram, I.; Schejter, A. Nitrocytochrome c. I. Structure and enzymic properties. Biochemistry. 9: 5113-5118; 1970. 29.Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60: 2299- 301; 1988. 30.Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 63: 1193A-1203A; 1991. 31.Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science, 246: 64-71; 1989. 32.Randey, A.; Mann, M. Proteomics to study genes and genomes. Nature, 405: 837-846; 2000. 33.Greis, K. D.; Zhu, S.; Matalon, S. Identification of nitration sites on surfactant protein A by tandem electrospray mass spectrometry. Arch. Biochem. Biophys. 335: 396-402; 1996. 34.Yi, D.; Smythe, G. A.; Blount, B. C.; Duncan, M. W. Peroxynitrite- mediated nitration of peptides: characterization of the products by electrospray and combined gas chromatography-mass spectrometry. Arch. Biochem. Biophys. 344: 253-9; 1997. 35.MacMillan-Crow, L. A.; Crow, J. P.; Thompson, J. A. Peroxynitrite- mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry, 37: 1613-22; 1998. 36.Batthya´ny, C.; Souza, J. M.; Dura´n, R.; Adriana Cassina, A.; Cerven˜ansky, C.; Radi, R. Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite. Biochemistry, 44: 8038-8046; 2005. 37.Heinecke, J. W.; Hsu, F. F.; Crowley, J. R.; Hazen, S. L.; Leeuwenburgh, C.; Mueller, D. M.; Rasmussen, J. E.; Turk, J. Detecting oxidative modification of biomolecules with isotope dilution mass spectrometry: sensitive and quantitative assays for oxidized amino acids in proteins and tissues. Methods Enzymol. 300: 124-144; 1999. 38.Aulak, K. S.; Miyagi, M.; Yan, L.; West, K. A.; Massillon, D.; Crabb, J. W.; Stuehr, D. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc. Natl. Acad. Sci. U.S.A. 98: 12056-12061; 2001. 39.Ruse, C. I.; Willard B. B.; Jin J. P.; Hass, T.; Kinter, M.; Bond, M. Quantitative dynamics of site-specific protein phosphorylation determined using liquid chromatography electrospray ionization mass spectrometry. Anal. Chem. 74: 1658-1664; 2002. 40. Nelson, D. P.; Kiesow, L. A. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C. Anal. Biochem. 49: 474-478; 1972. 41.Uppu, R. M.; Pryor, W. A. Biphasic synthesis of high concentrations of peroxynitrite using water-insoluble alkyl nitrite and hydrogen peroxide. Method Enzymol. 269: 322-329; 1996. 42.Beckman, J. S.; Chen, J.; Ischiropoulos, H.; Crow, J. P. Oxidative chemistry of peroxynitrite. Method Enzymol. 233: 229-240; 1994. 43.Willard, B. B.; Ruse, C. I.; Keightley, J. A.; Bond, M.; Kinter, M. Site-specific quantitation of protein nitration using liquid chromatography/tandem mass spectrometry. Anal. Chem. 75: 2370 -2376; 2003. 44.Radi, R. Nitric oxide, oxidants, and protein tyrosine nitration, Proc. Natl. Acad. Sci. U.S.A. 101: 4003-4008; 2004. 45.Souza, J. M.; Daikhin, E.; Yudkoff, M.; Raman, C. S.; Ischiropoulos, H. Factors determining the selectivity of protein tyrosine nitration. Arch. Biochem. Biophys. 371: 169-178; 1999. 46.Chen, Y.-R.; Deterding, L. J.; Sturgeon, B. E.; Tomer, K. B.; Mason, R. P. Protein oxidation of cytochrome c by reactive halogen species enhances its peroxidase activity. J. Biol. Chem. 277: 29781-29791; 2002. 47.Ischiropoulos, H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 356: 1-11; 1998. 48.Shishehbor, M. H.; Aviles, R. J.; Brennan, M. L.; Fu, X.; Goormastic, M.; Pearce, G. L.; Gokce, N.; Keaney Jr, J. F.; Penn, M. S.; Sprecher, D. L.; Vita, J. A.; Hazen, S. L. Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA, 289: 1675 -1680; 2003. 49.Farrell, A.-J.; Blake, D.-R.; Palmer, R. M. J.; Moncada, S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann. Rheum. Dis. 51: 1219-22; 1992. 50.van der Vliet, A.; Eiserich, J. P.; Halliwell, B.; Cross, C. E. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. J. Biol. Chem. 272: 7617-7625; 1997. 51.Wu, W.; Chen, Y.; Hazen, S. L. Eosinophil peroxidase nitrates protein tyrosyl residues. J. Biol. Chem. 274: 5933-25944; 1999. 52.van Dalen, C. J.; Winterbourn, C. C.; Senthilmohan, R.; Kettle, A. J. Nitrite as a substrate and inhibitor of myeloperoxidase. J. Biol. Chem. 275: 11638-11644; 2000. 53.Burner, U.; Furtmuller, P.-G.; Kettle, A. J.; Koppenol, W. H.; Obinger, C. Mechanism of reaction of myeloperoxidase with nitrite. J. Biol. Chem. 275: 20597-20601; 2000. 54.Zhang, H.; Bhargava, K.; Kesszler, A.; Feix, J.; Hogg, N.; Joseph, J.; Kalyanaraman, B. Transmembrane nitration of hydrophobic tyrosyl peptides. J. Biol. Chem. 278: 8969-8978; 2003. 55.Hsu, J. L.; Huang, S. Y.; Chow, N. H.; Chen, S. H. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75: 6843- 6852; 2003.
|