跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/25 03:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳正達
研究生(外文):Cheng-Dah Chen
論文名稱:金奈米圓柱粒子應用於生化感測及生醫領域之研究
論文名稱(外文):Biomolecular Sensing and Biomedical Properties of Gold Nanorods
指導教授:王崇人
指導教授(外文):Wang C.R. Chris
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:73
中文關鍵詞:表面電漿共振奈米材料光熱訊號光聲波折射率
外文關鍵詞:Refractive indexSurface Plasmon ResonanceNanomaterialPhotothermal signalPhotoacoustic wave
相關次數:
  • 被引用被引用:3
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:1
金奈米圓柱粒子特性上可分為主要貢獻之長軸共振和些微貢獻之短軸共振(在較短之520奈米波長),顆粒長短軸比值不同時,其長軸共振波帶則會產生偏移,且顆粒之吸收係數非常高,長軸共振波帶為950奈米長短軸比值5時,吸收係數約為5.5*10(9) (M–1•cm–1)。長軸共振波帶對顆粒長短軸比值的改變非常靈敏,且為了應用之需要,可調控顆粒吸收光譜之區域從可見區至紅外光區。
本論文針對與金奈米圓柱粒子長軸表面電漿共振有關之三大主題進行研究探討,第一點:發展新的不需螢光標示之表面電漿共振感測器,此感測器非常容易製備,且只需一部吸收光譜儀即可用來偵測訊號,更重要的是此感測器可以在近紅外光區操作,而且可以用來偵測低濃度之待測物於全血溶液中,待測物並不需另外做樣品製備,幾分鐘之內即可得到結果,我們從實驗中証實利用金奈米圓柱粒子之長軸共振波帶感測生物分子之可行性。從對周圍環境溶劑的感測可以得到,此包含長短軸比值5的金奈米圓柱粒子之感測器,單位折射率金奈米圓柱粒子長軸共振之偏移量為366 nm/RIU,而且此數值隨著長短軸比值變大而增加。這樣的感測器經由進一步修飾,可非常有效地用來定量有選擇性之生物分子,例如生物素/鏈黴抗生物素蛋白分子對,結果顯示光譜之波長偏移正比於鏈黴抗生物素蛋白之濃度,從實驗和理論皆顯示長軸表面電漿共振對生物感測是很有效的。
第二點:含有金奈米圓柱粒子之探針暨可選擇性標定癌細胞,又可利用雷射誘發熱治療,此有效之熱治療同時具有波長選擇性。金奈米圓柱粒子系統包含非常巨大的吸收係數、很強的光熱效應、及波長可調等優點,也可用於分子醫學影像。此實驗是把圓柱形奈米金修飾上人類上皮生長因子接受器第二蛋白對應之抗體,使其形成探針,具有認識癌細胞表面之人類上皮生長因子接受器第二蛋白的孕峞A而探針上之圓柱形奈米金照射雷射光後即吸收近紅外光並轉換成熱,細胞周圍局部的熱,可以非常有效的殺死癌細胞於幾分鐘之內,而從吸收光轉換成熱產生超音波之實驗,亦得到含有奈米金之癌細胞和不含奈米金之癌細胞兩者訊號的確有很大之差異,金奈米圓柱粒子展示非常有用的特性於癌細胞之顯影和近紅外光熱治療之領域。
第三點:探討金奈米圓柱粒子不對稱之幾何建構於熱力學不利之方式下進行。我們發展一種暨簡單又有效之方法,把金奈米圓柱粒子以頭對頭的方式架構成一維之奈米支架結構,以便應用於生物組織工程及自組裝之連接點。
It is known that the absorption spectra of AuNRs are characterized by the dominant longitudinal surface plasmon band (SPlong, at a longer wavelength) and the much weaker transverse surface plasmon band (SPtrans, at a shorter wavelength, ca. 520 nm), with the position of the SPlong band being strongly dependent on the aspect ratio of the AuNRs. Meanwhile, gold nanorods (AuNRs) possess extremely large photoabsorption cross-sections for the characteristic longitudinal surface plasmon (SPlong) resonant absorption band. For example, the absorption coefficient at 950 nm for AuNRs having a mean aspect ratio of 5 is ca. 5.5*10(9) (M–1•cm–1). The resonant wavelength of the SPlong absorption maximum, which is sensitive to the mean particle aspect ratio, has a very wide wavelength range from Vis. to NIR that can be utilized to tune the SPlong band for the particular needs of the application.
There are three major subjects in my thesis which all relate to the SPlong absorption band: (I) A new label-free LSPR sensor, which retains many of the desirable features of SPR sensors: This sensor is easy to fabricate, and requires only a Vis-NIR spectrometer for detection purposes. More importantly, the sensor operates in the NIR region and is potentially useful for detecting low concentration of analytes in whole blood within minutes without any sample preparation. We demonstrate the feasibility of using the lmax of SPlong band in the proposed biomolecular sensing scheme. The sensor containing AuNRs, with a mean aspect ratio of 5.2, exhibits a sensitivity of ca. 366 nm/RIU (refractive index unit), which increases accordingly with the increase of the particle mean aspect ratios. Such a biosensor was further modified to demonstrate its effectiveness in quantitative detection for selective binding events, such as biotin/streptavidin pairs. Results showed that the spectral lmax shifts linearly to the streptavidin concentration. The results from both experiment and model calculations strongly indicate the efficacy of the longitudinal surface plasmon absorption band in biosensing. (II) Laser-induced hyperthermia therapy in the cancer cells selective targeted nanoprobes containing AuNRs: This highly efficient thermotherapy is also wavelength-selective. The large absorption coefficients, strong optothermal effects, and wavelength tunability of AuNR systems also make them ideal candidates for use in biomedical molecular imaging. Anti-HER2 monoclonal-antibody (HER2mAb) was chosen to carry AuNRs for specific recognition of HER2 over-expression cancer cells. The AuNRs efficiently transform near-IR light into heat. The local heating is sufficiently high to successfully damage the neighboring cancer cells within a few minutes of laser irradiation. By the way, the generation of acoustic wave signal from the heat effectively discerned the cancer cell with and without nanoprobes. AuNRs have been demonstrated as being useful in both the imaging and NIR thermal therapy of cancer cells. (III) Particles self-assembly features structural control in thermodynamically disfavored means. We set out this work to aim at developing a simple, yet effective, nanoparticle self-assembly route to link gold nanorods in a way of end-to-end fashion forming another overall 1D nanostructure in order to apply in tissue engineering or self-assemble contact end.
總目錄……………………………………………………………………. vii
圖目錄……………………………………………………………………ix
表目錄……………………………………………………………………xvi
中英對照表……………………..…………………………………….…xvii
第一章 金奈米材料簡介………………………………………………….1
1.1 奈米科學……………………………………...………………….1
1.2奈米材料的定義………………………………...………………….1
1.3 一維奈米金顆粒之合成……………………...………………….2
1.4 一維奈米金顆粒之特殊性質………………...………………….5
第二章 金奈米圓柱粒子於生物感測之研究………………………….10
2.1 簡介金奈米粒子於生物感測器上之應用…...………………….10
2.2金奈米圓柱粒子吸附於玻璃片上用於生物分子之感測……….13
2.3 金奈米圓柱粒子吸附於玻璃片上感測生物分子之理論光譜預測……………………………………………………………….16
第三章 可調式金奈米圓柱粒子光熱轉換系統於治療醫學之研究….26
3.1 金奈米圓柱粒子之光熱轉換性質…………………...………….26
3.2金奈米圓柱粒子利用熱訊號作為患部治療之應用技術……….33
第四章 金奈米圓柱粒子於影像醫學之研究………………..……….45
4.1 影像醫學之簡介……………………………...………………….45
4.2金奈米圓柱粒子於光聲波之應用………………………………49
第五章 金奈米圓柱粒子的幾何組裝建構之研究………………………54
5.1 表面鍍層不均勻奈米結構顆粒之製備……...…………………55
5.2幾何形狀之建構…………………………..…...…………………59
5.3 無法自我組裝之顆粒………………………...…………………65
第六章 金奈米圓柱粒子研究探討之總結及未來發展方向………….68
6.1 金奈米圓柱粒子研究探討之總結…………...………………….68
6.2金奈米圓柱粒子未來發展方向……………...………………….68
參考文獻…………………………………………………………………71
參考文獻
1.柯麗霞,陳正達,王崇人 “奈米科技的早期發展歷史“ Chemistry (The Chinese Chem. Soc., Taipei) 2004, 62, 569-578.
2.(a) Zhao, X.; Xiao, B.; Fletcher, A. J.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, M. J. Science 2004, 306, 1012. (b) Bradshaw, D.; Prior, T. J.; Cussen, E. J.; Claridge, J. B.; Rosseinsky, M. J. J. Am. Chem. Soc. 2004, 126, 6106. (c) Zhang, H.; Hussain, I.; Brust, M.; Cooper, A. I. Adv. Mater. 2004, 16, 27. (d) Blundred, G. D.; Bridges, C. A.; Rosseinsky, M. J. Angew. Chem. Int. Ed. 2004, 43, 3562. (e) Durand, P.; Darling, G. R.; Dubitsky, Y.; Zaopo, A.; Rosseinsky, M. J. Nature Materials 2003, 2, 605. (f) Hayward, M. A.; Cussen, E. J.; Claridge, J. B.; Bieringer, M.; Rosseinsky, M. J.; Kiely, C. J.; Blundell, S. J.; Marshall, I. M.; Pratt, F. L. Science 2002, 295, 1882. (g) Butler, R.; Hopkinson, I.; Cooper, A. I. J. Am. Chem. Soc. 2003, 125, 14473. (h) Hebb, A. K.; Senoo, K.; Bhat, R.; Cooper, A. I. Chem. Mater. 2003, 15, 2061. (i) Hussain, I.; Brust, M.; Papworth, A. J.; Cooper, A. I. Langmuir 2003, 19, 4831. (j) Zhang, H.; Hardy, G. C.; Rosseinsky, M. J.; Cooper, A. I. Adv. Mater. 2003, 15, 78.
3.Oldenburg, S. J.; Jackson, J. B.; Westcott, S. L.; and Halas, N. J. Appl. Phys. Lett. 1999, 75, 2897.
4.Lal, S.; Taylor, R. N.; Jackson, J. B.; Westcott, S. L.; Nordlander, P.; and Halas, N. J. J. Phys. Chem. B 2002, 106, 5609.
5.Prodan, E.; Nordlander, P.; Halas, N. J. Nano Lett. 2003, 3, 1411.
6.Jensen, T. R.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 1999, 103, 2394.
7.Duval Malinsky, M.; Kelly, L.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B. 2001, 105, 2343.
8.Haes, A. J.; Van Duyne, R. P. J. Am. Chem. Soc. 2002, 124, 10596.
9.Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P. J. Am. Chem. Soc. 2003, 125, 588.
10.Riboh, J. C.; Haes, A. J.; McFarland, A. D.; Ranjit, C.; Van Duyne, R. P. J. Phys. Chem. B. 2003, 107, 1772.
11.Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2004, 108, 109.
12.Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2004, 108, 6961.
13.Michaels, A. M.; Jiang, Brus, L. J. Phys. Chem. B 2000, 104, 11965.
14.Jackson, J. B.; Westcott, S. L.; Hirsch, L. R.; West, J. L.; and Halas, N. J. Appl. Phys. Lett. 2003, 82, 257.
15.Jackson, J. B. and Halas, N. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 17930.
16.Talley, Chad E.; Jackson, Joseph B.; Grady, Nathaniel K.; Hollars,Christopher.; Lane, Stephen. M.; Huser, Thomas R.; Nordlander, Peter; and Halas, Naomi. J. Nano Lett. 2005, 5, 1569.
17.Van der Zande, B. M. I.; Böhmer, M. R.; Fokkink, L. G. J.; Schönenberger, C. Langmuir 2000, 16,451.
18.Foss, C. A., Jr.; Hornyak, G. L.; Stockert, J. A.; Martin, C. R. J. Phys. Chem. 1994, 98, 2963.
19.Hulteen, J. C.; Martin, C. R. J. Mater. Chem. 1997, 7, 1075.
20.Al-Rawashdeh, N. A. F.; Sandrock, M. L.; Seugling, C. J.; Foss, C. A., Jr. J. Phys. Chem. B 1998, 102, 361.
21.Van der Zande, B. M. I.; Bo¨hmer, M. R.; Fokkink, L. G. J.; Schönenberger, C. J. Phys. Chem. B 1997, 101, 852.
22.Schönenberger, C.; van der Zande, B. M. I.; Fokkink, L. G. J.; Henny, M.; Schmid, C.; Krüger, M.; Bachtold, A.; Huber, R.; Birk, H.; Stauder, U. J. Phys. Chem. B 1997, 101, 5497.
23.Gotschy, W ; Vonmetz, K.; Leitner, A.; Aussenegg, F. R. Opt. Lett. 1996, 21, 1099.
24.Yu, Y.Y.; Chang, S.S.; Lee, C.L.; Wang, C.R.C. J. Phys. Chem. B 1997, 101, 6661.
25.Chang, S.S.; Shih, C.W.; Chen, C.D.; Lai, W.C.; Wang, C.R.C. Langmuir 1999, 15, 701.
26.張仕欣, 國立中正大學博士論文, 2001, 台灣.
27.周政玄, 國立中正大學碩士論文, 2004, 台灣.
28.黃振堯, 國立中正大學碩士論文, 2004, 台灣.
29.Okamoto, T.; Yamaguchi, I.; Kobayashi, T. Opt. Lett. 2000, 25, 372-374.
30.Nath, N.; Chilkoti, A. Anal. Chem. 2002, 74, 504-509.
31.Nisoli, M. et al. Phys. Rev. B 1997, 55, 13424.
32.J. H. Hodak.; I. Martini.; G.V. Hartland. J. Chem. Phys. 1998, 108, 9210; Hodak, J. H.; Henglein, A.; Hartland, G.V. J. Chem. Phys. 1999, 111, 8613.
33.Boyer, D.; Tamarat, P.; Maali, A.; Lounis, B.; Orrit, M. Science 2002, 297, 1160.
34.Dickson, R. M.; Lyon, L. A. J. Phys. Chem. B 2000, 104, 6095.
35.Jones, C. D.; Lyon, L. A. J. Am. Chem. Soc. 2003, 125, 460.
36.Test strip, its production and use. Patent US 5,712,170. Publication date 1998-01- 27.
37.Method for detecting the presence of antibodies using gold-labeled antibodies and test kit. Patent US 5,079,172. Publication date 1992-01- 07.
38.Method and kit for analyte detection employing gold-sol bound antibodies. Patent US 5,616,467. Publication date 1997-04- 01.
39.Gold sol immunoassay system and device. Patent US 5,334,538. Publication date 1994-08- 02.
40.Bangs, L. B. Pure. Appl. Chem. 1996, 68, 1873-79.
41.Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078-1081.
42.Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607-609.
43.Storhoff, J. J.; Elghanian,R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998,120, 1959-1964.
44.Nguyen Thi Kim Thanh and Zeev Rosenzweig. Anal. Chem. 2002, 74, 1624-1628.
45.Bendayan, M. Biotech. Histochem. 2000, 75, 203-242.
46.Neagu, C.; Vanderwerf, K. O.; Putman, C. A. J.; Kraan, Y. M.; Degrooth, B.G.; Vanhulst, N. F.; Greve, J. J. Struct. Biol. 1994, 112, 32-40.
47.Hainfeld, J. F.; Powell, R. D. J. Histochem. Cytochem. 2000, 48, 471-480.
48.Goodman, S. L.; Hodges, G. M.; Livingston, D. C. Scanning Electron Microsc.1980, II, 133-146.
49.Horisberger, M.; Clerc, M. F. Histochem. 1985, 82, 219-223.
50.Jurgens, L.; Nichtl, A.; Werner, U. Cytometry 1999, 37, 87-92.
51.Coille, I.; Gauglitz, G.; Hoebeke, J. Anal. Bioanal. Chem. 2002, 372, 293.
52.Adamczyk, M.; Mattingly, P. G.; Shreder, K.; Yu, Z. Bioconjugate Chem. 1999, 10, 1032.
53.Kreibig, U. Optics of nanosized metals. In Handbook of Optical Properties; Hummel, R. E., Wissmann, P., Eds.; CRC Press: Boca Raton, 1997; Vol. 2; p 145.
54.Kreibig, U.; Gartz, M.; Hilger, A. Ber. Bunsen-Ges. 1997, 101, 1593.
55.Kreibig, U.; Gartz, M.; Hilger, A.; Hovel, H. Optical investigations of surfaces and interfaces of metal clusters. AdV. Met. Semicond. Clusters 1998, 4, 345.
56.Haynes, C. L.;Van Duyne, R. P. J. Phys. Chem. B 2001, 105, 5599.
57.Mulvaney, P. MRS Bull. 2001, 26, 1009.
58.El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257.
59.Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410.
60.Mulvaney, P. Langmuir 1996, 12, 788.
61.Jensen, T. R.; Kelly, K. L.; Lazarides, A.; Schatz, G. C. J. Cluster Sci. 1999, 10, 295.
62.Riboh, J. C.; Haes, A. J.; McFarland, A. D.; Ranjit, C. & Van Duyne, R. P. J. Phys. Chem. B 2003, 107, 1772-1780.
63.Turyan, I.; Matsue, T.; Mandler, D. Anal. Chem. 2000, 72, 3431-3435.
64.Jhaveri, S. D.; Trammell, S. A.; Lowy, D.A.; Tender L. M. J. Am. Chem. Soc. 2004, 126, 6540-6541
65.Kim, S.J.; Kellis, J. T.; Poulose, J. A.; Robertson, C. R.; Gast A.P. Langmuir 2002, 18, 6319-6323
66.Cheng, S.-F.; Chau, L.-K. Anal. Chem. 2003, 75, 16-21
67.Hoff, J. D.; Cheng, L.-J.; Meyhofer, E.; Guo, L. J.; Hunt, A. J. Nano Lett. 2004, 853-857
68.Wirtz, R.; Walti, C.; Tosch, P.; Pepper, M.; Davies, A. G.; Germishuizen, W. A.; Middelberg, A. P. J. Langmuir 2004, 20, 1527-1530.
69.Shih, C.W., Lai, W.C., Hwang, C.C., Chang, S.S., Wang, C.R.C., 2001. The Handbook of Metal Nanoparticles “Metal Nanoparticles: Synthesis, Characterization, and Application in preparation” by Marcel Dekker, Inc. Volume Editors: Feldheim/Foss. Chapter 7, page 163-182.
70.Bohren, C.F., Huffman, D.R., 1983. Absorption and Scattering of Light by Small Particles. New York: Wiley, page 149.
71.Spinke, J., Liley, M., Schmitt, F.J., Guder, H.J., Angermaier, L., Knoll, W. J. Chem. Phys. 1993, 99, 7012.
72.Pineiro, A.; Brocos, P.; Amigo, A.; Gracia-Fadrique, J.; Guadalupe Lemus, M. Langmuir 2001, 17, 4261.
73.Vila-Romeu, N.; Nieto-Suarez, M.; Dynarowicz-Latka, P.; Prieto, I. J. Phys. Chem. B 2002, 106, 9820.
74.Umpleby, R. J., II; Baxter, S. C.; Chen, Y.; Shah, R. N.; Shimizu, K. D. Anal. Chem. 2001, 73, 4584.
75.Weissleder, R. Nat. Biotechnol. 2001, 19, 316.
76.Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., Hazle, J. D., Halas, N. J.; West, J. L. PNAS 2003, 23, 13549.
77.Halas, N. J.; West, J. L. Technology in Cancer Research and Treatment 2004, 3, 33.
78.O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Cancer Letters 2004, 209, 171.
79.Loo, C.; Lowery, A.; Halas, N. J.; West, J. L.; Rebekah Drezek. Nano Lett 2005, 5, 709.
80.Ahmadi, T.S.; Logunov, S.L.; El-Sayed, M.A. J. Phys. Chem. 1996, 100, 8053.
81.Logunov, S.L.; Ahmadi, T.S.; El-Sayed, M.A.; Khoury, J.T.; Whetten, R.L. J. Phys. Chem. 1997, 101, 3713.
82.Kamat, P.V.; Shanghavi, B. J. Phys. Chem. B 1997, 101, 7675-7679.
83.Sershen, S. R.; Westcott, S. L.; Halas, N. J.; West, J. L. J. Biomedical Materials Research. 2000, 51, 293.
84.Bruchez Jr, M.; Moronne, M.; P, Gin.; Weiss, S.; Alivisatos. A. P. Science 1998, 281, 2013.
85.Chan, W. C.; Nie, S. Science 1998, 281, 2016.
86.Hirsch, L. R.; Jackson, J. B.; Lee, A.; Halas, N. J.; West, J. L. Anal. Chem. 2003, 75, 2377.
87.Liao, H.; Hafner, J. H. Chem. Mater. 2005, 17, 4636.
88.Laursen R. A.,”Solid-Phase Sequencing of Peptides and Protein”, The Peptide, Vol. 4, Ch. 6, 1981.
89.The anti-her2 antibodies were purified from the A-her2 hybridoma (CRL-10463; ATCC). Antibody production and purification was performed by GlycoNex Inc., Taiwan. Briefly, adjuvant-primed adult male mice (BALB/c) were injected with hybridoma cells. The mouse antibodies were purified from the mouse ascites using a protein A column and then dialyzed in PBS.
90.Tkachenko, A. G.; Xie, H.; Liu, Y.; Coleman, D.; Ryan, J.; Glomm, W. R.; Shipton, M. K.; Franzen, S.; Feldheim, D. L. Bioconjugate Chem. 2004, 15, 482.
91.http://www.mc.ntu.edu.tw/~maple/maple112/mono.html
92.Xiao, Hui.; Nagy,P. J. Appl. Phys. 1998, 83, 7453.
93.Maznev, A. A.; Hohlfeld, J.; Güdde, J. J. Appl.Phys. 1997, 82, 5082.
94.Perner, M.; Gresillon, S.; Ma¨rz, J.; Von Plessen, G.; Feldmann, J.;Porstendorfer, J.; Berg, K.-J.; Berg, G. Phys. Rev. Lett. 2000, 85, 792.
95.Li, M.; Schnnablegger, H.; Mann, S. Nature 1999, 402, 393.
96.Archibald, D. D.; Mann, S. Nature 1993, 364, 430.
97.Shenhar, R.; Rotello, V. M. Acc. Chem. Res. 2003, 36, 549.
98.Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. Science 2003, 301, 1882.
99.Winfree, E.; Liu, F.; Wenzler, L. A.; Seeman, N. C. Nature 1998, 394, 539.
100.LaBean, T. H. et al. J. Am. Chem. Soc. 2000, 122, 1848.
101.C. Mao.; W. Sun.; Seeman, N. C. J. Am. Chem. Soc. 1999, 121, 5437.
102.Sha, R.; Liu, F.; Seeman, N. C. Chem. Biol. 2000, 7, 743.
103.Yan, H.; LaBean, T. H.; Feng, L.; Reif, J. H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 8103.
104.Braun, E.; Eichen,Yoav.; Sivan, U.; Yoseph, G. B. Nature 1998, 391, 775.
105.Nakao, H.; Shiigi, H.; Yamamoto, Y.; Tokonami, S.; Nagaoka, T.; Sugiyama, S.; Ohtani, T. Nano Lett. 2003, 3, 1391-1394.
106.Mao, C; Solis, D. J.; Reiss, B. D.; Kottmann, S. T.; Sweeney, R. Y.; Hayhurst, A; Georgiou, G.; Iverson, B; Belcher, A. M. Science 2004, 303, 213.
107.Park, S; Lim, J. H.; Chung, S. W.; Mirkin, Chad A. Science 2004, 303, 348.
108.Hassenkam, T.; Moth-Poulsen, K.; Stuhr-Hansen, N.; Norgaard, K.; Kabir, M. S.; Bjornholm, T. Nano Lett. 2004, 4, 19.
109.Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Nano Lett. 2002, 2, 531.
110.Frehill, F.; Vos, J. G.; Benrezzak, S.; Koos, A. A.; Konya, Z.; Ruther, M. G.; Blau, W. J.; Fonseca, A.; Nagy, J. B.; Biro, L. P.; Minett, A. I.; in het Panhuis, M. J. Am. Chem. Soc. 2002,124, 13694.
111.Einaga, Y.; Taguchi, M.; Li, G.; Akitsu, T.; Gu, Z.; Sugai, T.; Sato, O. Chem. Mater. 2003, 15, 8.
112.Tanase, M.; Bauer, L. A.; Hultgren, A.; Silevitch, D. M.; Sun, L.; Reich, D. H.; Searson, P. C.; Meyer, G. J. Nano Lett. 2001, 1, 155.
113.M. Tanase.; D. M. Silevitch.; A. Hultgren.; L. A. Bauer.; P. C. Searson.; G. J. Meyer.; D. H. Reich. J. Appl. Phys. 2002, 91, 8549.
114.Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. J. Mater. Chem. 2002, 12, 1765.
115.Caswell, K. K.; Wilson, J. N.; Bunz, Uwe H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914.
116.Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V. J. Phys. Chem. B 2004, 108, 13066.
117.廖彥閔, 國立中正大學碩士論文, 2000, 台灣.
118.Grabar, K.C.; Allison, K.J.; Baker, B.E.; Bright, R.M.; Brown, K.R.; Freeman, R.G.; Fox, A.P.; Keating, C.D.; Musick, M.D.; Natan, M.J. Langmuir 1996, 12, 2353.
119.Liz-Marzan, L.M.; Giersig, M.; Mulvaney, P. Langmuir 1996, 12, 4329.
120.Suryanarayana, C.; Froes, F. H. Metallugial Transactions A 1992, 23, 1071.
121.Atay, T.; Song, J.-H.; Nurmikko, A. V. Nano Lett. 2004, 4, 1627.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top