跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾佳蓓
研究生(外文):Chia-Pei Chung
論文名稱:有機鉬金屬路易士酸在微波中對於Pechmann縮合反應催化活性之探討
論文名稱(外文):Recyclable Organomolybdenum Lewis Acid Catalyst and Microwave Assisted Pechmann Condensation Reactions
指導教授:于淑君
指導教授(外文):Shuchung Joyce Yu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:137
中文關鍵詞:有機金屬路易士酸催化縮合反應香豆素
外文關鍵詞:coumarinsPechmann condensation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本論文成它X成出有機鉬金屬路易士酸催化劑{[O=P(2-py)3]Mo(CO)(NO)2}(BF4)2,而此路易士酸之前驅物[O=P(2-py)3]Mo(CO)3的製備,是以Mo(CO)6與OP(2-py)3為起始物,在CH3CN溶劑中進行傳統迴流加熱十八小時後,再經多重純化步驟而得;但在相同系統中,若改以微波照射5分鐘,不另需純化步驟便可得到幾近百分之百的產率。而[O=P(2-py)3]Mo(CO)3與兩當量NOBF4在0oC下反應60分鐘之後便可得到墨綠色的路易士酸{[O=P(2-py)3]Mo(CO)(NO)2}(BF4)2。此催化劑為零價的有機鉬金屬錯合物,當一氧化碳配位基離去後,所展現的路易士酸度介於BF3和TiCl4之間,並且可穩定存在水與空氣中,能維持48小時以上而不會分解 (decomposed) ,且對於水的溶解度高達116 g/L。本論文主要重點是將此有機鉬金屬路易士酸應用於Pechmann縮合催化反應中,並以綠色化學為宗旨選擇以催化劑、傳統對流加熱法、微波、改變反應溶劑系統等因素探討對Pechmann縮合反應的影響。本實驗證明具有較高活性取代基的酚類與乙醯乙酸乙酯進行Pechmann縮合反應時,只需利用少量 (1 mol%) 的{[O=P(2-py)3]Mo(CO)(NO)2}(BF4)2催化劑,並且在無溶劑時或以室溫離子液體[Bmim]PF6為溶劑的系統,即可得到非常好的催化效率;除此之外,傳統路易士酸對於含有機鹼官能基酚類的Pechmann縮合反應並無催化活性,而本實驗所使用的有機鉬金屬路易士酸則對於含有機鹼酚類的Pechmann反應有相當優良的催化成效,並且還能大幅降低副產物的生成。另外,我們也以微波照射的方式,大幅減低反應時間,提升催化效率。
本實驗並合併了綠色化學中使用安全溶劑的概念,因此選擇不具揮發性,並可以反覆回收的離子液體,[Bmim]PF6 (butyl methyl imdazonium hexafluorophos-phate),作為溶劑系統,反應完成後以不與溶劑系統互溶的氯仿萃取產物,再以膠管柱層析的方式進行純化。本實驗發現到催化劑在離子液體系統中,利用間羥基苯甲醚與乙醯乙酸乙酯進行Pechmann縮合反應,有機鉬金屬路易士酸可以反覆使用高達六次,且產率都在80%以上。
本論文也比較了不同有機金屬路易士酸催化劑{[A(2-Py)3]M(CO)(NO)2}2+對於Pechmann縮合反應、Mukaiyama醛醇反應和Diels-Alder反應的催化效率,我們觀察到對Pechmann縮合反應和Mukaiyama醛醇反應而言,當M = Mo;A = OP時,具較好的催化效果;對Diels Alder反應而言,當M = W;A = P時,催化效率較好。
The complex {[O=P(2-py)3]Mo(CO)(NO)2}(BF4)2 (1) can be easily synthesized in two steps within 60 minutes from the commercially available Mo(CO)6. The precursor [O=P(2-py)3]Mo(CO)3 obtained in the first step can be prepared either through the conventional heating or under microwave irradiation conditions. The former method took 18 hours to give 80% yield of product after multi-step work-up procedures, and the later case gave greater than 90% yield of high purity product in just 5 minutes without further purifications. The direct reaction of [O=P(2-py)3]Mo(CO)3 with 2 equiv. of NOBF4 afforded complex 1 which can be stored as a crystalline solid in air for months without significant decomposition. In addition, complex 1 has high water-solubility of 116 g/L and possesses strong Lewis acidity upon loss of the CO ligand. The relative Lewis acid strength of complex 1 is found to be comparable to the acidity of AlEtCl2.
The Pechmann condensation reaction is the most widely applied method for the synthesis of coumarins since it involves the condensation of phenols with β-ketonic esters in the presence of a variety of acidic condensing agents and gives good yields of 4-substituted coumarins. In this dissertation the catalyses of a novel organomolybdenum Lewis acid catalyst [O=P(2-py)3W(CO)(NO)2](BF4)2 (1) in a series of Pechmann condensation reactions of ethyl acetoacetate with various phenols were investigated. We have also emphasized on the congregating effect of this Lewis acid under microwave irradiation conditions. With the employment of as little as 1 mol% of catalyst 1, the condensation reactions were efficiently performed either in a solvent-less system or in a thermally stable ionic liquid BmimPF6 (1-butyl-3-methylimidazolium hexafluorophosphate). In all cases, a dramatic reaction rate-enhancement from hours to minutes was observed under microwave irradiation conditions as compared to those found in the thermal heating method. In addition, it has been demonstrated that catalyst 1 can be selective and as effective towards organic base functionality such as 3-aminophenol.
Finally, on account of its extreme stability, the catalytic systems containing Lewis acid 1 in BmimPF6 can be recycled up to the 6th run with the conversion maintained at >80%.
圖目錄-----------------------------------------------------------------------------III
表目錄-----------------------------------------------------------------------------V
附圖目錄------------------------------------------------------------------------VII
中文摘要-------------------------------------------------------------------------IX
英文摘要-------------------------------------------------------------------------XI
一、緒論---------------------------------------------------------------------------1
1.1. 香豆素 (coumarin) 及其應用----------------------------------2
1.2. Pechmann縮合反應 (coumarin synthesis)--------------------4
1.3. 綠色化學----------------------------------------------------------12
1.4. 綠色化學與微波反應-------------------------------------------16
1.5. 研究動機----------------------------------------------------------20
二、實驗部分-------------------------------------------------------------------21
2.1. 一般敘述----------------------------------------------------------21
2.2. 儀器設備----------------------------------------------------------24
2.3. 實驗合成部分----------------------------------------------------26
2.4. 在微波照射下進行Mukaiyama醛醇反應-------------------47
2.5. 以室溫離子液體[Bmim]PF6為溶劑將路易士酸 (1) 重
複使用於製備7-methoxy-4-methyl-2H-chromen-2-one
(7) 之Pechmann縮合反應-------------------------------------50
三、結果與討論------------------------------------------------------------------51
3.1 前驅物O=P(2-py)3Mo(CO)3的製備--------------------------52
3.2 催化劑[O=P(2-py)3Mo(CO)(NO)2](BF4)2的合成-----------52
3.3 Pechmann縮合反應---------------------------------------------58
3.4 在微波加熱系統下,利用路易士酸催化劑1 進行
Pechmann縮合反應---------------------------------------------76
3.5 以室溫離子液體[Bmim]PF6為溶劑,路易士酸催化劑1
對Pechmann縮合反應的再生---------------------------------85
3.6 以不同路易士酸催化劑,催化Pechmann縮合反應-------87
3.7 以路易士酸[O=P(2-py)3Mo(CO)(NO)2](BF4)2催化
Mukaiyama醛醇反應和Diels-Alder反應-------------------89
3.8 Pechmann縮合反應之反應機制------------------------------93
四、結論---------------------------------------------------------------------------95
五、參考文獻---------------------------------------------------------------------97
附圖------------------------------------------------------------------------------101
1.吳榮宗著 ‘ 工業觸媒概論 ’78年增訂版,國興出版社。
2.Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. ‘Principle and Applications of Organotransition Metal Chemistry’’, Mill Valley, 1987.
3.Cairns, N.; Harwood L. M.; Astles, D. P. J. Chem. Soc.; Perkin Trans. 1, 1994, 3101.
4.(a) Perkin, W. H.; Henry, W. J. Chem. Soc., 1875, 28, 10. (b) Johnson, J. R. Org. React. 1942, 1, 210.
5.(a) Jones, F.; Piermatti, O.; Pizzo, F. Heterocycles, 1996, 43, 1257. (b) Jones G. Org. React., 1967, 15, 204. (c) Brufola, G.; Fringuelli F.; Piermatti O.; Pizzo F. Heterocycles, 1996, 43, 1257.
6.Pechmann, V. H.; Duisberg, C. Chem. Ber., 1884, 17, 929.
7.Shriner, R. L. Org. React., 1942, 1, 15.
8.(a) Mali, R. S.; Tilve, S. G. Synth. Commun. 1990, 20, 1781. (b) Maercker, A. Org. Synth. 1934, 14, 270. (c) Narasimhan, N. S.; Mali, R.S.; Barve, M. V. Synthesis 1979, 906. (d) Yavari, I.; Hekmat-Shoar, R.; Zonouzi, A. Tetrahedron Lett. 1998, 39, 2391.
9.Pechmann, H. V.; Duisberg, C. Ber. 1883, 16, 2119.
10.Woods, L. L.; Sapp, J. J. Org. Chem. 1962, 27, 3703.
11.(a) Bose, D. S.; Rudradas, A. P.; Babu, M. H. Tetrahedron Lett. 2002, 43, 9195. (b) De, S. K.;Gibbs, R. A. Synthesis, 2005, 1231. (c) Simmonis, H.; Remmert, P. Chem. Ber. 1914, 47, 2229. (d) Robertson, A.; Sandrock, W. F.; Henry, C. B. J. Chem. Soc. 1931, 2426.
12.(a) Fillion, E.; Dumas, A. M.; Kuropatwa, B. A.; Malhotra, N. R. Sitler, T. C. J. Org. Chem. 2006, 71, 409. (b) Bahekara, S. S.; Shinde, D. B. Tetrahedron Lett. 2004, 45, 7999.
13.Van, T. N.; Debenedetti, D.; Kimpe, N. D. Tetrahedron Lett. 2003, 44, 4199.
14.Russell, A.; Frye, J. R. Org. Synth. 1941, 21, 22.
15.Singh, V.; Kaur, S.; Sapehiyia, V.; Singh, J.; Kad, G. L. Catal. Commun. 2005, 6, 57.
16.(a) Alexander, V. M.; Bhat, R. P.; Samant, S. D. Tetrahedron Lett. 2005, 46, 6957. (b) Valizadeha, H.; Shockravi, A. Tetrahedron Lett. 2005, 46, 3501. (c) Sharma,G. V. M.; Reddy, J. J.; Lakshmi, P. S.; Krishna, P. R. Tetrahedron Lett. 2005, 46, 6119.
17.Potdar, M. K.; Rasalkar, M. S.; Mohile, S. S.; Salunkhe, M. M. J. Mol. Catal. A. Chem. 2005, 235, 249.
18.(a) Yu, Y.; Lin, R.; Zhang, Y. Tetrahedron Lett. 1993, 34, 4547. (b) Bao, W.; Zhang, Y.; Wang, J. Synth. Commun. 1996, 26, 3025.
19.Fre`re, S.; Thie´ry, V.; Besson, T. Tetrahedron Lett. 2001, 42, 2791.
20.(a) Sabou, R.; Hoelderich, W. F.; Ramprasad, D.; Weinand, R. J. Catal. 2005, 232, 34. (b) Laufer, M. C.; Hausmann, H.; Hölderich, W. F. J. Catal. 2003, 218, 315.
21.Romanelli, G. P.; Bennardi, D.; Ruiz, D. M.; Baronetti, G.; Thomas, H. J.; Autino, J. C. Tetrahedron Lett. 2004, 45, 8935.
22.張敏超 ‘ 綠色化學,自然就是美 ’科學發展, 2002年11月, 359期.
23.(a) Seddon, K. R. J. Chem. Tech. Biotechnol. 1997, 68, 351. (b) Seddon, K. R.; Stark, A.; Torres, M. J. Pure Appl. Chem. 2000, 72, 2275.
24.Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
25.Sheldon, R. Chem. Commun. 2001, 2399.
26.Anastas, P. T.; Warner, J. C. Green Chemistry : Theory and Practice, Oxford University Press, oxford, 1998.
27.Chauvin, Y.; Mussman, L.; Olivier, H. Angew. Chem. Int. Ed. Engl. 1995, 34, 2698.
28.Monteiro, A. L.; Zinn, F. K.; de Souza, R. F.; Dupont, J. Tetrahedron: Asymmetry 1997, 8, 177.
29.Song, C. E.; Roh, E. J. Chem. Commun. 2000, 837.
30.Kaufmann, D. E.; Nouroozian, M.; Henze, H. Synlett 1996, 1091.
31.(a) Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; McCormac, P. B.; Seddon, K. R. Org. Lett. 1999, 1, 997. (b) Buijsman, R. C.; van Vuuren, E.; Sterrenburg, J. G. Org. Lett. 2001, 3, 3785.
32.Earle, M. J.; McCormac, P. B.; Seddon, K. R. Green Chem. 1999, 1, 23.
33.Potdar, M. K.; Mohile, S. S.; Salunkhe, M. M. Tetrahedron Lett. 2001, 42, 9285.
34.楊俊南碩士論文 ‘ 有機鎢金屬路易士酸催化劑與醛類的三聚合化反應’中正大學化學暨生物化學研究所, 2004.
35.(a)Bonhote, P.; Dias, A. P.; Pagageorgio, N.; Kalyanasundaram, K.; Gratzel, M. Inorg. Chem. 1996, 35, 1168. (b)Seddon, K. R.; Gordon, M. C.; Holbrey, J. D.; Kennedy, A. R. J. Mater. Chem. 1998, 8, 2627. (c)Headly, A. D.; Jackson, N. M. J. Phys. Org. Chem. 2002, 15, 52.
36.Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baladisera, L; laberge, L; Rousell, J. Tetrahedron Lett. 1986, 27, 279.
37.Childs, R. F.; Mulholland, D. L.; Nixon, A. Can. J. Chem. 1982, 60, 801.
38.陳宜宏碩士論文 ‘水溶性有機鎢金屬路易士酸在綠色溶劑及微波中對於Diels-Alder反應的影響’ 中正大學化學研究所, 2003.
39.李婉甄碩士論文 ‘有機鉬金屬路易士酸在微波中對於Mukaiyama Aldol反應催化活性之探討’ 中正大學化學研究所, 2005.
40.傅耀賢博士論文 ‘ 過渡金屬錯合物觸媒的合成、催化活性以及動力學研究 ’中正大學化學研究所, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top