跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉泰延
研究生(外文):Tai-Yen Yeh
論文名稱:含鈍氣之電中性分子的理論預測
論文名稱(外文):Theoretical prediction of new noble-gas containing neutral molecules
指導教授:胡維平
指導教授(外文):Wei-Ping Hu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:150
中文關鍵詞:鈍氣
外文關鍵詞:noble-gas
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究分為三部分,在第一章中,我們以MP2 及 CCSD(T) 的理論計算方法,配合 aug-cc-pVDZ 和 aug-cc-pVTZ 等基底函數來研究 XNBNgF ( X = CH3, HO, NC, HCC, OB, H2N ; Ng = Ar, Kr )這類型惰性氣體分子的幾何結構、相對能量及可能發生的分解途徑。在較高階理論方法下,我們發現XNBArF分子的B-Ar及Ar-F鍵長分別為1.78Å及2.02Å左右;在XNBKrF分子的B-Kr及Kr-F鍵長分別為1.93Å及2.03Å左右。而在XNBNgF分子穩定性方面,我們主要探討( 1 ) XNBNgF → XNB + Ng + F及( 2 ) XNBNgF → XNBF +Ng兩種的分解反應,反應( 1 )當Ng = Ar時,反應能約為2 ~ 10 kcal/mol;當Ng = Kr時,反應能約為20 ~ 25 kcal/mol。反應( 2 )當Ng = Ar時,反應能約為 -145 ~ 155 kca/mol,能障約為12 ~ 17 kcal/mol;當Ng = Kr時,反應能約為 -120 ~ 130 kcal/mol,能障約為22 ~ 25 kcal/mol;最後,由電荷分佈圖中,我們發現Ng-B為共價鍵的特性,而F-Ng為離子鍵的特性。最後,結果顯示XNBNgF這類型分子有可能穩定的存在。

在第二章中我們用MP2 以及 CCSD(T) 的理論計算方法,配合 aug-cc-pVDZ 和 aug-cc-pVTZ 等基底函數來計算XNgY這類型惰性氣體分子 ( HBeNgF, FBeNgF, OBNgF, HNBNgF, NCNgH, HCCNgF, CNNgH, OBONgH, FNgH ) 的幾何結構相對能量以及可能發生的分解途徑。研究結果顯示,鈍氣原子 ( Ng = He, Ar, Kr ) 除了能與 H 及 F 鍵結外,也可與 B、C、N、O 等原子形成具有不同程度穩定性的化學鍵。且大部分分子在當Ng = He時都相當不穩定,而在Ng = Ar, Kr時,除了少數鈍氣分子如FBeArF及HBeArF,因其bending分解路徑之能量障礙太低,只有約5 kcal/mol。而其餘的分子在兩種反應路徑下皆有約10 kcal/mol以上的反應能量障礙,因此有可能在低溫環境下被實驗所偵測出來。

在第三章中,我們以Ab initio中MP2的理論方法配合6-31+G**及Dunning’s Correlation Consistent Basis Sets ( aug-cc-pVnZ, n = D,T ),來研究多種含兩個以上鈍氣原子的分子( FArBeArF、FArBNNBArF、FArBNCCNBArF、FArBNBeNBArF、FB(NBArF)2、B(NBArF)3、Trans-FArBNHC=CHNBArF、HC(NBArF)3、O(HBArF)2、F3NgB3O3 、F3Ng2B3O3和F3Ng3B3O3 )之最佳幾何結構及相對能量的計算。在分子穩定性方面,我們主要探討這類型化合物當分解出一個Ng原子時有可能發生的線性和Bending單分解反應途徑;並藉由觀察反應途徑中分子所進行的相對能量大小,初步估計化合物之穩定性。在較大的基底函數下,我們發現含多個惰性氣體的分子在線性分解方面都有吸熱10 ~ 20 kcal/mol左右;在Bending分解方面都約放熱 -150 ~ 160 kcal/mol以上,但少數F3ArB3O3 、F3Ar2B3O3和F3Ar3B3O3分子,在Bending分解時,由於反應能障太低,只有5 ~ 7 kcal/mol而導致分子不穩定。其餘的分子就兩反應路徑相對能量來看都有可能穩定存在。
This thesis consists of three chapters. In chapter one, the structures, relative energies and energy barriers of possible dissociation pathways of the new noble-gas molecules XNBNgF ( Ng = Ar, Kr ) have been calculated by MP2 and CCSD(T) methods. For XNBArF the highest-level calculation shows that the reaction energies of the two dissociation pathways ( 1 ) XNBArF → XNB + Ar + F and ( 2 ) XNBArF → XNBF + Ar are 2 ~ 10 and -145 ~ 155 kcal/mol respectively, and the barriers of the pathway ( 2 ) is 12 ~ 17 kcal/mol. For XNBKrF the reaction energies are 20 ~ 25 and -120 ~ 130 kcal/mol respectively, and the barriers of the pathway ( 2 ) is 22 ~ 25 kcal/mol. The population analysis indicates the covalent character of the B-Ng bonds and the ionic character of the Ng-F bonds. A portion of the calculated results shows the XNBNgF ( Ng = Ar, Kr ) could be dymamically stable.

In chapter two of this thesis, high-level correlated electronic structure calculation has been performed on the new noble-gas molecules XNgY ( HBeNgF, FBeNgF, OBNgF, HNBNgF, NCNgH, HCCNgF, CNNgH, OBONgH, FNgH; Ng = He, Ar, Kr ). In the current study, we found the noble-gas atoms not only can bond with H and F atoms, but they can also bond with B、C、N、O atoms. The result shows that all almost XHeY molecules were not stable exist. Except for FNgBeF and FNgBeH ( Ng = Ar, Kr ) which the bending barriers were so lower ( about 5 kcal/mol ) were not stable exist. The other XNgY ( Ng = Ar, Kr ) molecules were found to have higher energy barriers ( about over 10 kcal/mol ) for both unimolecular dissociation pathways. Thus, theses XNgY ( Ng = Ar, Kr ) could be dynamically stable species.

In chapter three, high-level ab initio molecular orbital theory is used to calculate the geometries, vibrational frequencies, and relative energies of the new molecules which contain more than one noble-gas atoms. ( such as FArBeArF, FArBNNBArF, FArBNCCNBArF, FArBNBeNBArF, FB(NBArF)2, B(NBArF)3, Trans-FArBNHC=CHNBArF, HC(NBArF)3, O(HBArF)2, F3NgB3O3, F3Ng2B3O3 and F3Ng3B3O3 ) For the stable character of noble-gas molecules, the relative energies of the two unimolecular dissociation pathways, linear and bending dissociation pathways were calculated. The higher-level calculation shows that the reaction energies of the two unimolecualr dissociation pathways are 10 ~ 20 and -150 ~ 160 kcal/mol respectively. So we speculate these molecules should be stable exist, except for the portion of molecules ( such as F3ArB3O3, F3Ar2B3O3 and F3Ar3B3O3 ) which their barriers of bending reactant were so lower ( about 5 ~ 7 kcal/mol ) that they could not form stable compounds . Thus we suggest these molecules maybe could be found at experiment in the future.
總目錄
頁次
中文摘要………………………………………………………………..iii
英文摘要………………………………………………………………...vi
第一章 新型鈍氣原子之分子XNBNgF ( X = CH3, OB, HO, NC, HCC, H2N; Ng = Ar, Kr )的理論預測

1.1 前言…………………………………………………………..1-2
1.2 計算方法……………………………………………………..1-4
1.3 結果與討論…………………………………………………1-15
1.4 結論………………………………………………………....1-20
感謝………………………………………………………...........1-21
參考文獻…………………………….……………………..........1-22
圖表……………………………………………………………...1-25

第二章 鈍氣原子與第二週期元素的鍵結之研究
2.1 前言…………………………………………………………..2-2
2.2 計算方法……………………………………………………..2-3
2.3 結果與討論…………………………………………………..2-4
2.4 結論…………………………………………………………2-10
感謝……………………………………………………………...2-11
參考文獻………………………………………………………...2-12
圖表……………………………………………………………...2-15
第三章 含多個鈍氣原子之分子的穩定性探討
3.1 前言…………………………………………………………3-2
3.2 計算方法……………………………………………………3-3
3.3 結果與討論…………………………………………………3-4
3.4 結論…………………………………………………………3-7
感謝……………………………………………………………...3-8
參考文獻………………………………………………………...3-9
圖表……………………………………………………………...3-12
1.Greenwood, N. N.; A. Earnshaw Chemistry of the Elements; Butterworth-Heinemann: Oxford, 2001.
2.Bartlett, N. Proc. Chem. Soc. 1962, 218.
3.Hawkins, D. T.; Falconer, W. E.; Bartlett, N. Noble-Gas Compounds. A Bibliography: 1962-1976; IFI/Plenum: New York, 1978.
4.(a) Pettersson, M.; Lundell, J.; Räsänen, M. J. Chem. Phys. 1995, 102, 6423. (b) Pettersson, M.; Lundell, J.; Räsänen, M. J. Chem. Phys. 1995, 103, 205.
5.(a) Khriachtchev, L.; Tanskanen, H.; Lundell, J.; Pettersson, M.; Kiljunen, H.; Räsänen, M. J. Am. Chem. Soc. 2003, 125, 4696. (b) Feldman, V. I.; Sukhov, F. F.; Orlov, A. Y.; Tyulpina, I. V. J. Am. Chem. Soc. 2003, 125, 4698. (c) Khriachtchev, L.; Tanskanen, H.; Cohen, A.; Gerber, R. B.; Lundell, J.; Pettersson, M.; Kiljunen, H.; Räsänen, M. J. Am. Chem. Soc. 2003, 125, 6876. (d) Tanskanen, H.; Khriachtchev, L.; Lundell, J.; Kiljunen, H.; Räsänen, M. J. Am. Chem. Soc. 2003, 125, 16361.
6.(a) Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. Nature 2000, 406, 874. (b) Khriachtchev, L.; Pettersson, M.; Lignell, A.; Räsänen, M. J. Am. Chem. Soc. 2001, 123, 8610.
7.Pettersson, M.; Khriachtchev, L.; Lignell, A.; Räsänen, M. J. Chem. Phys. 2002, 116, 2508.
8.(a) Cohen, A.; Lundell, J.; Gerber, R. B. J. Chem. Phys. 2003, 119, 6415. (b) Antoniotti, P.; Bronzolino, N.; Grandinetti, F. J. Phys. Chem. A 2003, 107, 2974. (c) Liang, B.; Andrews, L. Inorg. Chem. 2004, 43, 882. (d) Borocci, S.; Bronzolino, N.; Grandinetti, F. Chem. Phys. Lett. 2004, 384, 25.
9.Lin, T.-Y. ; Hsu, J.-B. ; Hu, W-P. Chem. Phys. Lett. 2004, 402, 514.
10. Y.-L. Chen, W.-P. Hu, J. Phys. Chem. A. 2004, 108, 4449.
11. Lin, T.-Y.; Hsu, J.-B.; Hu, W.-P. Chem. Phys. Lett. 2005, 402, 514.
12. Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
13.Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab initio Molecular Orbital Theory: John Wiley & Sons: New York, 1986.
14.Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.
15.(a) Dunning Jr., T. H. J. Chem. Phys. 1989, 90, 1007. (b) Kendall, R. A.; Dunning Jr., T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6769. (c) Woon, D. E.; Dunning Jr., T. H. J. Chem. Phys. 1993, 98, 1358. (d) Wilson, A. K.; Woon, D. E.; Peterson, K.; Dunning Jr., T. H. J. Chem. Phys. 1999, 110, 7667.
16.Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision A.1; Gaussian, Inc.: Pittsburgh, PA, 2003.
17.(a) Runeberg, N.; Pettersson, M.; Khriachtchev, L.; Lundell, J.; Räsänen, M. J. Chem. Phys. 2001, 114, 836. (b) Chen, Y.-L.; W.-P. Hu J. Phys. Chem. A, 2004, 108, 4449
18.Chaban, G. M.; Lundell, J.; Gerber, R. B. Chem. Phys. Lett. 2002, 364, 628.
19.Yen, S.-Y.; Mou, C.-H.; Hu, W.-P. Chem. Phys. Lett. 2004, 383, 606.
20.(a) Frenking, G.; Koch, W.; Gauss, J. Cremer, D. J. Am. Chem. Soc. 1988, 110, 8007. (b) Wong, M. W. J. Am. Chem. Soc. 2000, 122, 62
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top