跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/26 13:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張義鴻
研究生(外文):Yi-hung Chang
論文名稱:含鈍氣之陰離子的理論預測
論文名稱(外文):Theoretical prediction of new noble-gas containing anions
指導教授:胡維平
指導教授(外文):Wei-Ping Hu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:94
中文關鍵詞:含鈍氣之陰離子的理論預測
外文關鍵詞:Theoretical prediction of new noble-gas containi
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究分為三部分,在第一章中,我們用MP2/aug-cc-pVDZ計算F-(NgO)n n = 1 ~ 6的結構,並且使用各種的理論方法計算F-(NgO)n→F-+ n Ng + n O(S)解離路徑的結合能。結果發現F-(NgO)n分子的F-Ng鍵,多接一個HeO、 ArO和KrO鍵長會平均增長0.07、0.08和0.07 Å。而F- + ( Ng + O )n結合能,如預期得知Ng=Kr 能量最低,其次是Ar跟He,多接一個HeO、 ArO和KrO分子,能量會增加13、26跟60 kcal/mole左右。從結果得知,多個NgO單元配位在F陰離子的周圍,有很高的結合能,在基態可以穩定存在。

在第二章,我們以MP2及CCSD(T)的理論方法配合6-31+G** 、aug-cc-pVDZ及aug-cc-pVTZ的基底函數來研究F-NgY ( Ng = He, Ar, Kr Y= BN, BeO) 這類型惰性氣體分子的穩定性。在最高階的理論方法下,我們針對FNgY- → FY- + Ng的反應路徑,FNgBN- ( Ng = He, Ar, Kr)的反應能量與能量障礙分別為2.1及-32.1 kcal/mol、13.2及-44.6 kcal/mol和19.1及-58.3 kcal/mol;而FNgBeO- ( Ng = Ar, Kr)的反應能量與能量障礙分別為3.8及-48.1 kcal/mol和7.0及-55.2 kcal/mol 。從電子密度圖顯示,Ng−Y為共價鍵特性,而F−Ng為離子鍵特性。計算結果指出FKrY- (Y= BN, BeO) 應該都是動力學上穩定的惰性氣體陰離子。
在第三章中,我們以B3LYP及MP2的理論方法配合6-311G** 、6-311+G**及cc-pVDZ的基底函數,和MCG3及MLSEn+d的方法來研究CX3CXHO + O2 → CX3CXO + OOH ( X=H, F )反應能量及能量障礙。由實驗與理論做比較,實驗上( X= H )的反應快,而在理論上是( X=F )的反應快,兩者在動力學上並不吻合,我們進一步使用較高階的理論方法去計算,用MP2/cc-pVDZ所計算( X=H, F ) A和B路徑的能量障礙分別為32.6、28.7及29.1、24.5 kcal/mol,在MCG3及MLSEn+d方法的結果為1.9、-2.7及7.7、0.4 kcal/mol,我們理論計算的結果是X = H的能量障礙低,容易進行反應;而實驗所得到的活化能與速率常數分別為1.1 kcal/mol及1.0 × 10-14 cm3/molecule*s (298 K),結果顯示X=H反應快,我們所得到的結果與實驗吻合。
In chapter one, the structures and energies of the noble-gas containing anions F-(NgO)n n =1~ 6 ( Ng = He, Ar, Kr )have been calculated by high-level ab initio calculation.The F - Ng bonds were increased by 0.07 Å for gradually increase NgO. The reaction energies of dissociation pathways F-(NgO)n→F-+ n Ng + n O(S),energies increased by 13 ~ 60 kcal/mol for gradually increase NgO. We find that there are many O=Ng bond ligands around anion F-. The reaction energy is large, and the singlet-state is stable.

In chapter two of this thesis, high-level electronic structure calculation has been performed on the noble-gas molecules F-NgY ( Ng = He, Ar, Kr Y= BN, BeO). For F-KrBN the high-level calculation shows that the reaction energies of dissociation pathways, (1) FNgY-→ F-+ Ng + Y, and (2) FNgY- → FY- + Ng is -58.3 and 89.2 kcal/mol and barriers of the pathways (1) is 19.1 kcal/mol, respectively. For F-KrBeO the reaction energies are -55.2 and 83.1 kcal/mol and barriers of the pathways (1) is 7.0 kcal/mol. The population analysis indicates the covalent of the Ng-Y bond. The calculated results shows the F-KrY (Y= BN, BeO) could be dynamically stable species.

In chapter three, ab initio electronic calculations provide potential energy surfaces for CF3CFHO reaction with O2. Additional calculations with the same methods study the analogous reactions of the unfluorinated analogue CH3CH2O. We have used multi-coefficient Gaussian-3(MCG3) with multi-level electronic structure methods (MLSEn+d) for calaulated potential energy surfaces.We show that CF3CFHO reacts more rapidly with O2 than its unfluorinated analogue, CH3CH2O. But CH3CH2O in the experiment is rapidly. The computations presented here do suggest that CH3CH2O reacts more rapidly with O2.
總目錄
頁次
中文摘要………………………………………………………………..iii
英文摘要………………………………………………………………...v
第一章 含鈍氣陰離子F-(NgO)n ,n = 1~6 理論預測 ( Ng = He , Ar,
and Kr )

1.1 前言…………………………………………………………..1-2
1.2 計算方法……………………………………………………..1-5
1.3 結果與討論…………………………………………………..1-15
1.4 結論………………………………………………………....1-19
參考文獻………………………………………………………....1-21
圖表……………………………………………………………....1-23

第二章 新型惰性氣體分子F-NgY (Ng = He, Ar, Kr Y= BN, BeO) 的理論預測
2.1 前言…………………………………………………………..2-2
2.2 計算方法……………………………………………………..2-3
2.3 結果與討論…………………………………………………..2-4
2.4 結論…………………………………………………………..2-8
參考文獻………………………………………………………...2-10
圖表……………………………………………………………...2-12
第三章 CX3CXHO + O2 → CX3CXO + OOH ( X= H, F )反應
之探討
3.1 前言…………………………………………………………3-2
3.2 計算方法……………………………………………………3-3
3.3 結果與討論…………………………………………………3-3
3.4 結論…………………………………………………………3-6
參考文獻………………………………………………………..3-8
圖表……………………………………………………………..3-11
1.Greenwood, N. N.; A. Earnshaw, in Chemistry of the Elements; Butterworth-Heinemann: Oxford, 2001, 888.
2.Bartlett, N. Proc. Chem. Soc. 1962, 218.
3.(a) Pettersson, M.; Lundell, J.; Räsänen, M. J. Chem. Phys. 1995, 102, 6423. (b)Pettersson, M.; Lundell, J.; Räsänen, M. J. Chem. Phys. 1995, 103, 205. (c) Pettersson, M.; Lundell, J.; Khriachtchev, L.; Räsänen, M. J. Chem. Phys. 1998, 109, 618.
4.(a) Khriachtchev, L.; Tanskanen, H.; Lundell, J.; Pettersson, M.; Kiljunen, H.; Räsänen, M. J. Am. Chem. Soc. 2003, 125, 4696. (b) Feldman, V. I.; Sukhov, F. F.; Orlov, A. Y.; Tyulpina, I. V. J. Am. Chem. Soc. 2003, 125, 4698. (c) Khriachtchev, L.; Tanskanen, H.; Cohen, A.; Gerber, R. B.; Lundell, J.; Pettersson, M.; Kiljunen, H.; Räsänen, M. J. Am. Chem. Soc. 2003, 125, 6876. (d) Tanskanen, H.; Khriachtchev, L.; Lundell, J.; Kiljunen, H.; Räsänen, M. J. Am. Chem. Soc. 2003, 125, 16361.
5.Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. Nature 2000, 406, 874.
6.Pettersson, M.; Khriachtchev, L.; Lignell, A.; Räsänen, M. J. Chem. Phys. 2002 116, 2508.
7.Seidel, S.; Seppelt, K. Science 2000, 290, 117.
8.Hu, W.-P.; Huang, C.-H. J. Am. Chem. Soc. 2001, 123, 2340.
9.(a) Li, J.; Bursten, B. E.; Liang, B.; Andrews, L. Science 2002, 295, 2242. (b) Andrews, L.; Liang, B.; Li, J.; Bursten, B. E. J. Am. Chem. Soc. 2003, 125, 3126. (c) Liang, B.; Andrews, L.; Li, J.; Bursten, B. E. Inorg. Chem. 2004, 43, 882.
10.Lin, T.-Y. ; Hsu, J.-B. ; Hu, W-P. Chem. Phys. Lett. 2004, 402, 514.
11.Christe, K. O. Angew. Chem. Int. Ed. 2001, 40, 1419.
12.Li, T.-H.; Mou, C.-H.; Chen, H.-R.; and Hu, W.-P. J. Am. Chem.
Soc. 2005, 127, 9241-9245.
13.Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
14.Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.
15.(a) Dunning Jr., T. H. J. Chem. Phys. 1989, 90, 1007. (b) Kendall, R. A.; Dunning Jr., T. H. J. Chem. Phys. 1992, 96, 6796. (c) Woon, D. E.; Dunning Jr., T. H. J. Chem. Phys. 1993, 98, 1358. (d) Wilson, A. K.; Woon, D. E.; Peterson, K. A.; Dunning Jr., T. H. J. Chem. Phys. 1999, 110, 7667.
16.Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.;
Schlegel,H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top