跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姜宏明
研究生(外文):Hong-Ming Chiang
論文名稱:兒童比例概念的發展
論文名稱(外文):The Development of Children’s Proportional Concept
指導教授:蔣文祁蔣文祁引用關係
指導教授(外文):Wen-Chi Chiang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:心理學所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:84
中文關鍵詞:比例比例概念比例大小判斷作業不連續量連續量比值
外文關鍵詞:proportionfractionratiodevelopment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:684
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究使用濃度之比例大小判斷作業來測量兒童對於比例概念的瞭解。所有實驗包含第一階段的連續量與不連續量刺激型態之比例大小判斷作業,在呈現刺激後詢問兒童哪一邊比較甜的判斷大小作業,以及第二階段的三項基礎認知能力測驗:數數廣度測驗、數數能力測驗和分數表徵能力測驗,並進行之間的相關性瞭解。實驗一6歲組和8歲組受試者「跨越一半」題目類型之正確率顯著高於「非跨越一半」題目類型之正確率,但連續量與不連續量刺激型態所得到的正確率並無顯著差異。實驗二5歲組受試者「跨越一半」題目類型之正確率顯著高於「非跨越一半」題目類型之正確率,但同樣亦無顯示連續量刺激型態之正確率顯著高於不連續量刺激型態之正確率。然而實驗一與實驗二結果顯示比例大小判斷作業之正確率與比例項目的比值相關達到顯著。此外,實驗一、實驗二之結果也顯示: 5歲、6歲和8歲各個年齡層約有三分之一的兒童在做比例大小判斷作業時採用絕對數量策略或數數的策略解決比例問題,單純在指導語提醒受試者要同時去注意蜂蜜和水兩個部分可能還是不足以提取受試者既有之相關知識概念。實驗三在指導語部分強調三個標籤與三種比較大小的情況之區別,並操弄跨越一半題目類型與非跨越一半題目類型之比例項目的比值,結果顯示:跨越一半題目類型之正確率與兩邊濃度的接近程度沒有顯著的關連,但非跨越一半題目類型之正確率與兩邊濃度的接近程度則有顯著的關連,亦即當兩邊濃度越接近反應正確率越低。
目次
緒論………………………………………………………………………… 1
研究目的……………………………………………………………17
實驗一………………………………………………………………………22
方法…………………………………………………………………………22
結果…………………………………………………………………………32
討論…………………………………………………………………………45
實驗二………………………………………………………………………48
方法…………………………………………………………………………48
結果…………………………………………………………………………48
討論…………………………………………………………………………56
實驗三………………………………………………………………………61
方法…………………………………………………………………………61
結果…………………………………………………………………………63
討論…………………………………………………………………………70
綜合討論……………………………………………………………………73
參考文獻……………………………………………………………………81
參考文獻
Barth, H, Mont, K. L., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E.(2006). Non-symbolic arithmetic in adults and young children. Cognition, 98, 199-222.
Case, R., Kurland, M., & Goldberg, J. (1982). Operational efficiency and the growth of short term memory span. Journal of Experimental Child Psychology, 33, 386–404.
Goswami, U., & Brown, A. L. (1989). Melting cholocolate and Melting snowmen:analogical reasoning and causal relations. Cognition, 35, 69-95.
Goswami, U., & Brown, A. L. (1990). Higher-order structure and relational reasoning: Contrasting analogical and thematic relations. Cognition, 36, 207-226.
Hecht, S. A., Close, L., & Santisi, M. (2003). Sources of individual differences in fraction skills. Journal of Experimental Child Psychology, 86, 277-302.
Jeong, Y. (2003). The development of proportional reasoning:equivalence matching with continuous vs. discrete quantity. Unpublished doctoral dissertation, University of Chicago, Illinois.
Michael, L., & Ransdell, S. (2001).Testing Software:Clinical and research application tools. Counting Span Test for Children. [On-line]. Available: http://www.psychologysoftware.com/testing_instruments.htm (2005, March 31)
Miura, I. T., Okamoto, Y., Vlahovic-Stetic, V., Kim, C. C., & Han, J. H. (1999). Language supports for children’s understanding of numerical fractions: Cross-national comparisons. Journal of Experimental Child Psychology, 74, 356-365.
Mix, K., Levine, SC, & Huttenlocher, J. (1999). Early fraction calculation ability. Developmental Psychology, 35, 164-174.
Newcombe, N., Huttenlocher, J., & Learmonth, A. (1999). Infants' coding of location in continuous space. Infant Behavior and Development, 22, 483-510.
Noelting, G. (1980a). The development of proportional reasoning and then ratio concept: Part I - Differentiation of stage. Education Studies in Mathematics , 11, 217-253.
Noelting, G. (1980b). The development of proportional reasoning and the ratio concept: Part II - Problem structure at successive stages; problem-solving strategies and the mechanism of adaptive restructuring. Educational Studies in Mathematics, 11, 331-363.
Piaget, J., & Inhelder, B. (1975) The origin of the idea of chance in children. London: Routledge and Kegan Paul.
Siegler, R. S. (1976). Three aspects of cognitive development. Cognitive Psychology, 8, 481-520.
Siegler, R. S., & Vago S. (1978). The development of a proportionality concept:judging relative fullness. Journal of Experimental Child Psychology, 25, 371-395.
Singer-Freeman, K. E., & Goswami, U. (2001). Does half a pizza equal half a box of chocolates? Proportional matching in an analogy task. Cognitive Development. 16, 811-829.
Singer, J., & Lovett, S. B. (1991, April). Children's understanding of probability: Quantitative or directly apprehended ? Poster presented at the annual meeting of the American Education Research Association, San Francisco, California.
Singer, J. S. & Resnick, L. B. (1992). Representations of proportional relationships:Are children part-part or part-whole reasoners? Educational Studies in Mathematics, 23, 231-246.
Sophian, C., & Wood, A. (1997). Proportional reasoning in young children: The parts and the whole of it. Journal of Educational Psychology, 89, 309-317.
Sophian, C. (2000). Perceptions of proportionality in young children:Matching spatial ratios. Cognition, 75, 145-170.
Spinillo, A. G., & Bryant, P. (1991). Children's proportional judgements: The importance of “half”. Child Development, 62, 427-440.
Spinillo, A. G., & Bryant, P. (1999). Proportional reasoning in young children: Part-part comparisons about continuous and discontinuous quantities. Mathematical Cognition, 5, 181-197.
Spinillo, A. G. (2002). Children's use of part-part comparisons to estimate probability. Journal of Mathematical Behavior, vol. 21, no. 3, 357-369.
Sophian, C., & Wood, A. (1997). Proportional reasoning in young children:The parts and the whole of it. Journal of Educational Psychology, 89, 309-317.
Towse, J. N., Hitch, G. J., & Hutton U. (1998). A reevaluation of working memory capacity in children. Journal of Memory and Language, 39, 195-217.
Wynn, K. (1990). Children's understanding of counting. Cognition, 36, 155-193.
Wynn, K. (1992). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24, 220-251.
Wynn, K. (1995). Origins of numerical knowledge. Mathematical Cognition, 1, 35-60.
Wynn, K. (1997). Competence models of numerical development. Cognitive Development, 12, 333-339.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top