跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王志豪
研究生(外文):Chih-hao Wang
論文名稱:不可靠等候模式最佳化求解與分析
指導教授:陳世彬陳世彬引用關係
學位類別:碩士
校院名稱:國立中正大學
系所名稱:企業管理所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:94
中文關鍵詞:等候理論平衡方程式狀態轉移圖不可靠因素
外文關鍵詞:queueing theorybalance equationsstate transition diagramnon-reliable factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
等候理論已經廣泛地被應用在生產製造系統的研究,不過基於實際環境裡的生產製造系統時常受限於某些不可靠的因素,過於簡化的等候模式並不能完全適用,因此已經有學者提出方法來探討這些具有不可靠因素的等候系統。本研究以高科技產業中生產製造系統為研究對象,考量其生產過程中主要受限於加工機台、加工過程兩項不可靠因素,構建出一不可靠等候模式,並說明此不可靠等候模式的運作流程;接著在求解程序上,首先描繪出狀態轉移圖並列出平衡方程式,進而推導出系統各可能狀態機率值的解析解,其次定義系統成本函數與績效評估值;在實證分析的部分假設有限等候空間數量確實已知,利用前述推導出之解析解,並且設定加工速率、良率與重新加工率之間的關係使得模式更加合理,在不同的參數值之下將系統成本函數化為單一變數的非線性函數,並進行最佳化求解,決定出最佳的加工速率;最後進行系統成本函數與績效評估值的敏感度分析。本研究構建出的模式除了可提供等候理論研究上的參考之外,亦可提供在實際環境裡受限於不可靠因素的生產製造系統在績效評估、控制與最佳化設計上的參考與應用。
Queueing theory has already been widely applied to the research of the manufacturing system. However, the manufacturing system in the practical situation is often restricted under non-reliable factors, overly simple queueing system could not be suitable. Some scholars have presented various methods to evaluate the queueing system with non-reliable factors. This paper focused on the manufacturing system of Hi-Tech industry considering two non-reliable factors: machine breakdown and manufacturing processes, and then a non-reliable queueing model was constructed. To solve the model, first we depicted the state transition diagram and balance equations were derived, and then solved the probabilities of every possible state of the system. Secondly, the cost function and performance measures were defined. In the empirical analysis, we assumed that the capacity of the finite queue is known, and built the relations among working rate, yield rate and reworking rate in order to make the model more reasonable. Then, the cost function was transformed into the nonlinear function of the single variable with different parameter values. By solving the cost function for optimization, the optimal working rate can be determined. Finally, we proceeded the sensitivity analysis for this system. The model we constructed in this paper can offer not only another viewpoint in the research of queueing theory but also a practical tool in performance evaluation, control and optimization design of manufacturing system considering the non-reliable factors in the real world.
目 錄
摘要 Ⅰ
Abstract Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅴ
表目錄 Ⅵ
第一章 緒論 1
1.1 研究動機與目的 1
1.2 相關研究 2
1.3 研究方法 4
第二章 不可靠等候模式之構建 11
2.1 模式假設 11
2.2 模式架構圖 12
第三章 不可靠等候模式之求解程序 15
3.1 狀態轉移圖 15
3.2 平衡方程式 16
3.3 穩定狀態解 18
3.4 成本函數構建與績效評估值 21
3.4.1 成本函數構建 21
3.4.2 績效評估值 23
第四章 實證分析 25
4.1 實例說明 25
4.2 實例求解 34
4.2.1 、 時,成本函數求解 35
4.2.2 、 時,成本函數求解 40
4.2.3 、 時,成本函數求解 45
4.2.4 、 時,成本函數求解 50
4.3 最佳化求解驗證與成本函數、績效評估值敏感度分析 55
4.3.1 最佳化求解驗證 55
4.3.2 成本函數敏感度分析 60
4.3.3 績效評估值敏感度分析 73
第五章 結論 79
參考文獻
1. Altiok, T., 1989. Queueing models of a single processor with failures. Performance Evaluation 9, 93-102.
2. Avi-Itzhak, B. and Naor, P., 1963. Some queueing problems with the service station subject to breakdown. Operations Research 10, 303-320.
3. Bowling, S. R., Khasawneh, M.T., Kaewkuekool, S. and Cho, B.R., 2004. A Markovian approach to determining optimum process target levels for a multi-stage serial production system. European Journal of Operational Research 159, 636-650.
4. Federgruen, A. and Green, L., 1986. Queueing systems with service interruptions. Operational Research 34, 752-768.
5. Gaver, D.P., 1962. A waiting line with interrupted service including priorities. Journal of the Roval Statistical Society B24, 73-90.
6. Gopalan, M.N. and Kannan, S., 1995. Expected number analysis of a two - server queueing network subject to inter-stage inspection and rework. Computers Ops Res., 22 (9), 935-946.
7. Govil, M.K. and Fu, M. C., 1999. Queueing theory in manufacturing: A survey. Journal of Manufacturing Systems 18, 214-240.
8. Keilsen, J., 1962. Queues subject to service interruptions. Ann. Math. Stat 33, 1314-1322.
9. Lingo User’s Guide, 1999, LINDO Systems Inc., Chicago.
10. Mathematica 5.2, 2005, Wolfram Research Inc., Illinois.
11. Mitrani, I.L., and Avi-Itzhak, B., 1968. A many server queue with service interruptions. Operations Research 16, 628-638.
12. Ross, S. M., 2003. Introduction to probability models, 8th Ed. John Wiley, New Jersey .
13. Taha, H.A., 2003. Operations research, 7th Ed. Prentice Hall, New Jersey .
14. Thiruvengadam, K., 1963. Queueing with breakdowns. Operational Research 11, 62-71.
15. Wang, K.H, Chiang, Y.C. and Ke, J.C., 2003. Cost analysis of the unloader queueing system with a single unloader subject to breakdowns. Journal of the Operational Research Society 54, 515-520.
16. Wang, K.H and Hsu, L.Y., 1995. Cost analysis of the machine-repair problem with R non-reliable service stations. Microelectron. Reliab. 35 (6), 923-934.
17. White, H.C. and Christie, L.S., 1958. Queueing with preemptive priorities or with breakdown. Operational Research 6, 79-95.
18. Yang, T., Lee, R.S., Chen, M.C. and Chen, P., 2005. Queueing network model for a single-operator machine interference problem with external operatioms. European Journal of Operational Research 167, 163-178.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top