跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/10 12:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖博毅
研究生(外文):Boi-Yee Liao
論文名稱:利用盲解迴旋法分析地震破裂過程
論文名稱(外文):The Rupture Process of Earthquake Source, Using the Blind Deconvolution Method
指導教授:黃蕙珠
指導教授(外文):Huey-Chu Huang
學位類別:博士
校院名稱:國立中正大學
系所名稱:地震研究所暨應用地球物理研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:164
中文關鍵詞:震波模擬強地動預估震源破裂過程盲解迴旋法
外文關鍵詞:ground motion predictionseismic waveform simulationblind deconvolution methodsource rupture process
相關次數:
  • 被引用被引用:1
  • 點閱點閱:601
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用複合盲解迴旋法分析地震訊號,從地震訊號中直接分離震源函數與格林函數,其中震源函數描述地震能量隨時間釋放的變化情形,其所包含的面積即為地震矩。因此本研究藉由計算不同方位測站之震源函數,以了解地震能量的時空分布,進而逆推地震破裂過程。藉由對地震震源破裂過程的探討,了解斷層面與地震的性質,進而建立震源破裂模型,並配合震波計算的原理,有效預估強地動的參數與波形之模擬,是本文主要的研究範疇。
本文之各項研究成果,可綜合如下:
(1) 以盲解迴旋法(Santamaria et al., 1999)為基礎,發展雙通道盲解迴旋法,並應用於震測資料處理,藉以分離震源效應及消除表面波雜訊,進而尋找反射訊號的所在,檢視盲解迴旋法的效用。
(2) 運用盲解迴旋法分析發生於1995年7月7日的埔里地震,經由震源歷時的估算,推論埔里地震是由向東dipping的斷層錯動,而產生東南朝西北方向破裂,破裂面積之半徑約0.96 km,破裂面積約2.88 km2,此地震之最小應力降約56 bars。
(3) 發展複合盲解迴旋法,更準確的估算震源函數,並藉由遠震資料的分析,逆推發生於2002年阿拉斯加大地震的破裂過程。根據逆推結果,阿拉斯加大地震的地震破裂歷時約74秒,朝東南東方向破裂。此地震包含三個主要子事件,其深度皆小於10km,沿斷層面之滑移量介於0.0142m~ 13.4m,平均約4.146m;沿斷層面的破裂速度值介於2.64 ~3.32 km/s,平均約2.95 km/s;最大的升起時間為14.8秒。
(4) 利用複合盲解迴旋法逆推1999年嘉義地震破裂過程,得知此地震歷時約6.5秒,破裂方向朝西北方;沿斷層面上滑移量介於0.004m~2.2m,平均約0.38m;其破裂速度變化較平緩,平均約2.6km/s;最大的升起時間約1.1秒。此外,本研究運用隨機有限源的計算方法,配合嘉義地震逆推的震源參數,計算近場高頻地震波,與實際觀測資料比對後,發現在低頻(f<1Hz)部分誤差較大。
(5) 本研究採用理論震波的計算並搭配隨機有限源的方法,結合所逆推之震源參數,分別計算低頻(f<1Hz)與高頻(1~20Hz)的震波,再合成為寬頻的地震波,以降低單由隨機有限源所產生的誤差。
(6) 若震源參數未知,本研究假設斷層面上的滑移分布滿足k-2模型(Bernard et al., 1996),模擬40個不同的運動震源模型,再根據此震源模型逐一計算其地震波,且與觀測資料做比對,發現利用此方法預估強地動時,可以有效預估PGA值並了解震波訊號之主要特性。
Abstract
In this paper, the blind deconvolution method is employed to recover the unknown Green’s function and estimate the source time function from observed seismic data of earthquake directly. The source time functions retrieved from different stations describe overall features of the moment release on the fault plane. Therefore, we derive the source time functions of good azimuthal stations and employee the GA algorithm to invert the source process of the earthquake. At first, the two-channel blind deconvolution method is developed. It is applied to analyze exploration data and determine the location of the reflective signal by removing the source effect and underground wave. From the good results, the efficiency of the blind deconvolution is identified. Furthermore, the blind deconvolution is then employed to analyze the source time functions of the 7 July 1995 Pu-Li, Taiwan earthquake ( =5.3). The rupture direction of Pu-Li earthquake is roughly toward the northwest, rupture area is about 2.88 km2, the fault radius is estimated to be about 0.96 km and yields a minimum stress drop of 56 bars. The hybrid blind deconvolution method is developed here to get the more stable solution of source time function. It is used to deconvolve the teleseismic broadband seismic wave displacement recordings of the earthquake to invert the rupture processes of the Alaska earthquake occurred on November 3, 2002 (Mw 7.9) and Chia-Yi earthquake occurred on October 22, 1999 (Mw 5.9) in Taiwan.
According to the inverted result, there are some important features about the Alaska earthquake: 1.The total duration time of Alaska earthquake process of derived ASFT is about 74 sec. 2.The event ruptured unilaterally to east-southeast. 3. From the image of the static slip distribution, there are three slip-concentrated areas above depth 10km on the fault plane. 4. The maximum slip is about 13.4m centered on 170km east from the hypocenter, and the average slip on the observed rupture area reaches 4.1m. 5. The maximum rupture velocity is 3.32km/sec and the minimum is 2.64km/sec, averaged rupture velocity is 2.95km/s. 6. The maximum of rise time for individual subfaults is about 14.8s. The main inverted results of Chia-Yi earthquake are the following: 1. According to the derived ASFT, the total duration of the rupture process is about 6.5 sec and the rupture propagated is in the northwest direction. 2. The slip amplitudes on the fault range from 0.004m to 2.2m, and their average is about 0.38m. 3. The distribution of rupture velocity is more smoothly and the averaged rupture velocity is about 2.6km/s. 4. The maximum rise time on the individual sub-fault is about 1.1 sec.
The technique of simulations of strong ground motion are fulfilling by combining theoretical wave (f<1Hz) calculation and stochastic finite-fault modeling (1~20Hz). Finally, we develop the kinematic source model and associate with the simulation technique to predict the near-field strong ground motion waveforms and responses. There are some good correspondences between simulations with observations.
目 錄
頁次
誌謝……………………………………………………………………...I
摘要……..………………………………………….................................II
目錄……………………………………………………………………..IV
圖目….……………….………………………………………………....VI
表目…..…………………………………………………………………IX
第一章 緒論……………………………………………………………..1
1.1 研究動機與目的……………………………………………….1
1.2 文獻回顧……………………………………………………….5
1.3 論文範疇與架構……………………………………………...12
第二章 分析方法………………………………………………………15
2.1 盲解迴旋法理論……………………………………………...15
2.1.1 傳統盲解迴旋法………………….…………………...16
2.1.2 雙通道盲解迴旋法……………………………………19
2.1.3 複合盲解迴旋法………………………………………21
2.2 震波計算理論………………………………………………...24
2.2.1 運動震源模型………………………….…...…………24
2.2.2 隨機有限源……………………………………………27
2.3 基因演算法…………………………………………………...30
第三章 雙通道盲解迴旋法於震測資料的應用..………………...…...34
3.1 雙通道盲解迴旋法的理論測試……………………………...34
3.2震測資料的分析……………………...………………………41 3.3 結論…………………………………………………………...43
第四章 盲解迴旋法於地震訊號的應用………………………….…...46
4.1 盲解迴旋法的理論測試……………………………………...46
4.1.1柏努利-高斯模型(BG Model)…………………………47
4.1.2 理論地層模型…………………………………………49
4.1.3墨西哥地震紀錄分析………………………………….57
4.2 埔里地震之震源特性探討...…………………………………58
4.3 結論…………………………………………………………...67
第五章 2002年阿拉斯加大地震之震源破裂過程探討……………..69
5.1 阿拉斯加大地震之簡介……………………………………..69
5.2複合盲解迴旋的理論測試……………………………………73
5.2.1 BG機率模型…………………………………………...73
5.2.2經驗格林函數…………………………………………..76
5.3實際運用………………………………………………………79
5.3.1視震源函數(apparent source time function, ASTF)…....79
5.3.2震源逆推………………………………………………..83
5.3.3地震破裂過程分析……………………………………..86
5.4結果與討論……………………………………………………92
第六章 逆推1022嘉義地震之破裂過程與近場強地動模擬...............96
6.1前言……………………………………………………………96
6.2分析方法………………………………………………………99
6.3實際應用………………………………………………………99
6.3.1視震源函數.……………………………………………..99
6.3.2震源逆推結果………………………………………….104
6.4 強地動模擬…..……………………………………………...109
6.5 近場強地動之預估………………………………………….119
6.5.1 震波計算理論驗證……………………………………120
6.5.2 震源模型………..………………………………..……124
6.6強地動預估…………………..………………………………125
6.6.1測站CHY009的模擬….………………………………129
6.6.2測站CHY039的模擬….………………………………133
6.7 結論………………………………………………………….137
第七章 總結與展望……………………….………………………….139
7.1 總結………………………………………………………….139
7.2 展望………………………………………………………….141
參考文獻………………………………………………………………144
參考文獻
Aguirre, J. and Irikura, K. (2003), Reliability of envelope inversion for the high-frequency radiation source process using strong motion data: Example of the 1995 Hyogoken Nanbu earthquake, Bull. Seism. Soc. Am. 93, 2005-2016.

Aki, K. and P. G. Richard (1980), Quantitative Seismology, W. H. Freemen and Company, San Franscico.

Ammon, C. J., A. A. Velasco and T. Lay (1993), Rapid estimation of rupture directivity: application to the 1992 Landers ( =7.4) and Cape Mendocino ( =7.2), California earthquake, Geophys. Res. Lett., 20, 97-100.

Asano, K., T. Iwata and K. Irikura (2003), Ground motion characteristics and source process of the 2002 Denali earthquake inferred from the strong motion records, Eos Trans. AGU, 84: Fall Meet. Suppl., Abstract S12A-0367, 2003.

Atkinson, G. M. and D. M. Boore (1997), Some comparisons between recent ground-motion relations, Seism. Res. Lett., 68, 24-40.

Baumont, D., F. Courboulex, O. Scotti and G. Stavrakakis (2002), Slip distribution of the Mw 5.9, 1999 Athens earthquake inverted from regional seismiological data, Geophys. Res. Lett., 29(15), 1638, doi: 10.1029/ 2001GL014261, 2002.

Beresnev, I. A. and G. M. Atkinson (1997), Modeling finite-fault radiation from the spectrum, Bull. Seism. Soc. Am., 87, 67-84.

Beresnev, I. A. (2002), Source parameters observable from the corner frequency of earthquake spectra, Bull. Seism. Soc. Am., 92, 2047-2048.

Beresnev, I. A. (2004), Uncertainties in finite-fault slip inversions: To what extent to believe?, Bull. Seism. Soc. Am. 93, 2445-2458.

Berge, C. J. C. Gariel, and P. Bernard (1998), A very broad-band stochastic source model used for near source strong motion prediction, Geophy. Res. Lett., 25, 1063-1066.

Bernard, P. and R. Madariaga (1984), A new asymptotic method for the modeling of near-field accelerograms, Bull. Seism. Soc. Am., 74, 593-557.

Bernard, P., A. Herrero, A. and C. Berge (1996), Modeling directivity of heterogeneous earthquake ruptures, Bull. Seism. Soc. Am., 86(4), 1149-1160.

Bertero, M., D. Bindi, P. Boccacci, M. Cattaneo, C. Eva and V. Lanza (1997), Application of the projected Landweber method to the estimation of the source time function in seismology, Inverse problem, 13, 456-486.

Bertero, M., D. Bindi, P. Boccacci, M. Cattaneo, C. Eva and V. Lanza (1998), A novel blind-deconvolution method with an application to seismology, Inverse Problem, 14, 815-833.

Boore, D.M. (1983), Stochastic simulation oh high-frequency ground motions based on seismological models of the radiated spectra, Bull. Seism. Soc. Am. 73, 1865-1894.

Boore, D. M. and W. B. Joyner (1997), Site amplifications for generic rock sites, Bull. Seism. Soc. Am., 87, 327-341.

Boore, D. M. (2003), Simulation of ground motion using the stochastic method, Pure and Applied Geophysics, 160, 635-676.

Brune, J. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75, 4997-5009.

Capuano,P., A. Zollo, A. Emolo, S. Marcucci and G.. Milana (2000), Rupture mechanism and source parameters of Umbria-Marche mainshocks from strong motion data, Journal of Seismology, 4, 463-478.

Castro, R. R., A. Rovelli, M. Cocco, M. D. Bona and F. Pacor (2001), Stochastic simulation of strong-motion records from the 26 September 1997 (Mw 6), Umbria-Marche (Central Italy) earthquake, Bull. Seism. Soc. Am., 91, 27-39.

Chan, C.H. and K.F. Ma (2004), Association of five moderate-large earthquakes of the faults in Taiwan, TAO, 15(1), 97-110.

Chen, Y. T. and L. S. Xu (2000), A time domain inversion technique for the tempo-spatial distribution of slip on a finite fault plane with application to recent large earthquakes in Tibetan Plateau, Geophy. J. Int. 143, 407-416.

Cheng, Q., R. Chen, and T. Li (1996), Simultaneous wavelet estimation and deconvolution of reflection seismic signals, IEEE Trans. on Geoscience and Remote Sensing, 34, 377-384.

Chi, C., and W. Chen (1991), Maximum-likelihood blind deconvolution: non-white Bernoulli-Gaussian case, IEEE Trans. on Geoscience and Remote Sensing, 29, 790-795.

Chi, W. C. and D. Dreger (2004), Crustal deformation in Taiwan: Results from finite source inversions of six Mw>5.8 Chi-Chi aftershocks, J. Geophys. Res., 109, B07305, doi: 10.1029/2003JB002606.

Choy, G. L., and J. Boatwright (2004), Radiated energy and the rupture process of the Denali fault earthquake sequence of 2002 from broadband teleseismic body waves, Bull. Seism. Soc. Am., 94, No. 6B, S269-S277.

Courboulex, F., J. Virieux, A. Deschamps, D. Gibert and A. Zollo (1996), Source investigation of a small event using empirical Green’s function and simulated annealing, Gepohys. J. Int. 125, 768-780.

Denali Earthquake Geologic Field Team (2002), Initial observations and implications of surface rupture and slip distribution associated with the Mw 7.9 Denali fault earthquake, EOS Trans. AGU, 83: Fall Meet. Suppl., Abstract S72F-1337.

Dewberry, S. R., and R.S. Crosson (1996), The MD 5.0 earthquake of 29 January 1995 in the Puget lowland of western Washington: an event on the Seattle fault? Bull. Seism. Soc. Am. 86, 1167-1172.

Dreger, D. (1994), Empirical Green's function study of the January 17, 1994 Northridge, California earthquake, Geophys. Res. Lett., 21, 2633-2636.

Dreger, D., D. Oglesby, W. C. Chi, M. H. Murray, K. Kore, N. Ratchkovski and R. Hansen (2002), Source kinematics and dynamics of the 3 November, 2002 Mw 7.9 Denali fault, Alaska earthquake, AEOS Trans. AGU. 83: Fall Meet. Suppl., Abstract S72F-1343.
Dreger, D., N. Ratchkovski and R. Hansen (2003), Source kinematics of the 3 November, 2002 Mw 7.9 Denali fault, Alaska earthquake, Seism. Res. Lett., 74, 236, 2003.

Dunham, E. M., and R. J. Archuleta (2004), Evidence for a supershear transient during the 2002 Denali fault earthquake, Bull. Seism. Soc. Am., 94, No. 6B, pp. S256 - S268.

Eberhart-Phillips, D., P. J. Haeussler, J. T. Freymueller, A. D. Frankel, C. M. Rubin, P. Craw, N. A. Ratchkovski, G.. Anderson, G. A. Carver, A. J. Crone, T. E. Dawson, H. Fletcher, R. Hansen, E. L. Harp, R. A. Harris, D. P. Hill, S. Hreinsdottir, R. W. Jibson, L. M. Jones, R. Kayen, D. K. Keefer, C. F. Larsen, S. C. Moran, S. F. Personius, G. Plafker, B. Sherrod, K. Sieh, N. Sitar, W. K. Wallace (2003), The 2002 Denali fault earthquake, Alaska: a large magnitude, slip-partitioned event. Science 300, 1113-1118.

Emolo, A. and A. Zollo (2001), Accelerometric radiation simulation for the September 26, 1997 Umbria-Marche (Central Italy) main shocks, ANNALI DI GEOFISICA, 44(3), 605-617.

Fisher, M. A., W. J. Nokleberg, N. A. Ratchkovski, L. Pellerin, T. M. Brocher and J. Booker (2004), Geophysical investigation of the Denali fault and Alaska range orogen within the aftershock zone of the October-November 2002, M=7.9 Denali fault earthquake, Geology, 32, 269-272, doi: 10.1130/G20127.1, 2004.

Frankel, A. (2002), Rupture process of the M7.9 Denali fault, Alaska, earthquake determined from strong-motion recordings, EOS Trans. AGU, 83: Fall Meet. Suppl., Abstract S72F-1340.

Frankel, A. (2004), Rupture process of the M 7.9 Denali fault, Alaska, earthquake: subevents, directivity, and scaling of high-frequency ground motions, Bull. Seism. Soc. Am., 94, No. 6B, S234 - S255.

Furuya, K. and Y. Kaneda (1997), Two-channel blind deconvolution for non-minimum phase impulse responses, IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’97, 1315-1318.

Gallovic, F. and J. Brokesova (2004), The k-2 rupture model parametric study: example of the 1999 Athens earthquake, Studia geoph. et geod., 48, 589-613.

Godfrey, R. and F. Rocca (1981), Zero memory nonlinear deconvolution, Geophys. Prospecting, 29, 189-228.

Gurelli, M.I. and C.L. Nikias (1995), EVAM: An eigenvector-based algorithm for multichannel blind deconvolution of input colored signals, IEEE Trans. on Signal Processing. 43, 134-149.

Guatteri, M., P. M. Mai, G. C. Beroza and J. Boatwright (2003), Strong ground-motion prediction from stochastic-dynamic source models, Bull. Seism. Soc. Am. 93, 301-313.
Hartzell, S., S. Harmsen, A. Frankel, and S. Larsen (1999), Calculation of broadband time histories of ground motion: Comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake, Bull. Seism. Soc. Am. 86, 1484-1504.
Hartzell, S., M. Guatteri, P. M. Mai, P. C. Liu and M. Fisk (2005), Calcluation of broadband time histories of ground motion, part II: Kinematic and dynamic modeling using theoretical Green’s functions and comparison with the 1994 Northridge earthquake, Bull. Seism. Soc. Am., 95, 614-645.
Haykin, S., 1994: Blind Deconvolution, Prentice-Hall, Englewood Cliffs, NJ. 181-258.

Helmberger, D., and R. Wiggins (1971), Upper mantle structure of the Midwestern United States, J. Geophys. Res. 76, 3229-3245.

Herrero, A. and Bernard, P. (1994), A kinematic self-similar rupture process for earthquakes, Bull. Seism. Soc. Am., 84, 1216-1229.

Hisada, H. (1994), An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths, Bull. Seism. Soc. Am. 84, 1456-1472.

Hisada, H. (1995), An efficient method for computing Green's functions for a layered half-space with sources and receivers at close depths (part 2), Bull. Seism. Soc. Am. 85, 1080-1093.

Hisada, H. (2000), A theoretical Omega-square model considering the spatial variation in slip and rupture velocity, Bull. Seism. Soc. Am., 90(2), 387-400.

Hisada, H. (2002), http://kouzou.cc.kogakuin.ac.jp/Open/Green/hisada/.

Holland, J. H. (1975), Adaptation in natural and artificial system, Ann Arbor: The University of Michigan Press.

Hreinsdottir, S., J. T. Freymueller, H. J. Fletcher, C. F. Larson and R. Burgmann (2003), Coseismic slip distribution of the 2002 Mw 7.9 Denali fault earthquake, Alaska, determined from GPS measurements, 30(13), 1670, doi:10.1029/ 2003GL017447, 2003.

Huang M. W., J. H. Wang, R. D. Hwang and K. C. Chen (2002), Estimates of source parameters of two large aftershocks of the 1999 Chi-Chi, Taiwan, earthquake in the Chia-Yi area, TAO, 13(3), 299-312.

Hutchings, L. (1994), Kinematic earthquake models and synthesized ground motion using empirical Green’s functions, Bull. Seism. Soc. Am. 84, 1028-1050.

Ide, S. (1999), Source process of the 1997 Yamaguchi, Japan, earthquake analyzed in different frequency bands, Geophys. Res. Lett., 26(13), 1973-1976.

Idier, J., and Y. Goussard (1993), Multichannel seismic deconvolution, IEEE Trans. on Geoscience and Remote Sensing, 31, 961-979.

Inouye, Y. and T. Sato (1999), Iterative algorithms based on multistage criteria for multichannel blind deconvolution, IEEE Trans. on Signal Processing. 47, 1759-1764.

Jin, A., C. A. Moya and M. Ando (2000), Simultaneous determination of site responses and source parameters of small earthquakes along the Atotsugawa fault Zone, Central Japan, Bull. Seism. Soc. Am. 90, 1430-1445.

Jonathan D. and R. Adrian (2004), Characterization of forward-directivity ground motions in the near-fault region, Soil dynamics and Earthquake Engineering, 24, 815-828.

Kaaresen, K. F. and T. Taxt (1998), Multichannel blind deconvolution of seismic signals, Geophys, 63, 2093-2107.

Kennett, B. L. N. and E. R. Engdahl (1991), Travel times for global earthquake location and phase identification, Geophys. J. Int., 105, 429-465.

Kikuchi, M. and H. Kanamori (1991), Inversion of complex body waves III, Bull. Seism. Soc. Am., 81, 2335-2350.

Kikuchi, M. and Y. Yamanaka (2002), Source rupture process of the central Alaska earthquake of November 3, 2002, inferred from teleseismic body waves. ERI, University of Tokyo, Japan. http://wwweic.eri.u-tokyo.ac.jp/EIC/EIC_News/021103AL-e.html.

Kramer, F. J., Peterson R. W., and Walter, W. C., eds. (1968), Seismic energy sources 1968 handbook. Presented at the 38th Annual International SEG Meeting, Denver.

Lam, N., J. Wilson and G. Hutchinson (2000), Generation of synthetic earthquake accelerograms using seismological modeling: a review, Journal of Earthquake Engineering, 4(3), 321-354.

Lay, T. and T. C. Wallace (1995), Modern Global Seismology, Academic Press.

Luo, H., and Ynada, Li. (1998), The application of blind channel identification technique to prestack seismic deconvolution, Proceedings of the IEEE, 86, No. 10, 2082-2088.

Ma, K. F., J. Mori, S. J. Lee and S. B. Yu (2001), Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seism. Soc. Am. 91, 1069-1087.

Makowski, R. (2002), Source pulse estimation of mine shock by blind deconvolution, Pure and Applied Geophysics, 160, 1191-1205.

Mai, P. M. and G. C. Beroza (2003), A hybrid method for calculating near-source, broadband seismograms: application to strong motion prediction, Physics of the Earth and Planetary Interiors, 137, 183-199.

Mendel, J. M. (1983), Optimal seismic deconvolution: An estimation-based approach. New York: Academic.

Mendel, J. M. (1990), Maximum likelihood deconvolution: A journey into model- based signal processing. New York: Springer-Verlag.

Menke, W. (1989), Geophysical Data Analysis: Discrete Inverse Theory, Acadmic Press, INC.

Miyake, H., T. Iwata and K. Irikura (2003), Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area, Bull. Seism. Soc. Am. 93, 2531-2545.

Miyoshi, M. and Y. Kaneda (1988), Inverse filtering of room acoustics, IEEE Trans. on Acoustics, Speech and Signal Processing. 36, 145-152.

Nabelek, J., and Xia, G. (1995), Moment-tensor analysis using regional data: application to the 25 March, 1993, Scotts Mills, Oregon, earthquake, Geophys. Res. Lett., 22, 13-16.

Nakanishi, I. (1991), Source process of the 1989 Sanriku-Oki earthquake, Japan: source function determined using empirical Green’s function, J. Phys. Earth., 39, 661-667.

Oglesby, D., D. S. Dreger, R. A. Harris, N. Ratchkovski, and R. Hansen (2004), Inverse kinematic and forward dynamic models of the 2002 Denali fault earthquake, Alaska, Bull. Seism. Soc. Am., 94, No. 6B, S214 - S233.

Oglesby, D. and M. D., Steven (2002), Stochastic fault stress: Implications for fault dynamics and ground motion, Bull. Seism. Soc. Am., 92(8), 3006-3021.

Olson, J. V., C. R. Wilson and R. A. Hansen (2003), Infrasound associated with the 2002 Denali fault earthquake, Alaska, Geophys. Res. Lett., 30(23), 2195, doi: 10.1029/ 2003GL018568, 2003.

Ozacar, A. A., S. L. Beck and D. H. Christensen (2003), Source process of the 3 November 2002 Denali fault earthquake (central Alaska) from teleseismic observations, Geophys. Res. Lett., 30(12), 1638, doi: 10.1029/ 2003GL017272, 2003.

Ozacar, A. A., and S. L. Beck (2004), The 2002 Denali fault and 2001 Kunlun fault earthquakes: Complex rupture processes of two large strike-slip events, Bull. Seism. Soc. Am., 94, No. 6B, S278-292.

Pacor, F., G. Cultrera, A. Mendez and M. Cocco (2005), Finite fault modeling of strong ground motions using a hybrid deterministic-stochastic approach, Bull. Seism. Soc. Am., 95, 225-240.
Pflug, L.A. (2000), Principal domains of the trispectrum signal bandwidth, and implications for deconvolution, Geophysics 65, No.3, 958-969.
Plicka, V. and J. Zahradnik (1998), Inverting seismograms of weak events for empirical Green's tensor derivatives, Geophys. J. Int., 132, 471-478.
Pulido, N. and T. Kubo (2000), Broadband ground motion simulation during the 1999 Kocaeli (Turkey) earthquake, The 2nd Workshop ACES, Hakone 15-20.

Pulido, N. and T. Kubo (2004), Near-fault strong motion complexity of the 2000 Tottori earthquake (Japan) from a broadband source asperity model, Tectonophysics, 390, 177-192.

Ramillien, G. (2001), Genetic algorithms for geophysical parameter inversion from altimeter data, Geophys. J. Int. 147, 339-402.

Ratchkovski, N. A., R. A. Hansen, J. C. Stachnik, T. Cox, O. Fox, L. Rao, E. Clark, M. Lafevers, S. Estes, J. B. MacCormack and T. Williams (2003), Aftershocks sequence of the Mw 7.9 Denali fault, Alaska, earthquake of 3 November 2002 from regional seismic network data, Seism. Res. Lett., 74, 743-752, 2003.

Rau, R. J. and F. Wu (1995), Tomographic imaging of lithospheric structures under Taiwan, Earth Planet. Sci. Lett., 133, 517-532.

Robinson, E.A. (1975), Dynamic predictive deconvolution, Geophys. Prospecting, 23, 780-798.

Roumelioti, Z. and A. Kiratzi (2002), Stochastic simulation of strong-motion records from the 15 April 1979 (M 7.1) Montenegro earthquake, Bull. Seism. Soc. Am., 92, 1095-1101.

Roumelioti, Z., D. Dreger, A. Kiratzi, and N. Theodulidis (2003), Slip distribution of the 7 September 1999 Athens earthquake inferred from an empirical Green’s function study, Bull. Seism. Soc. Am., 93, 775-782.

Roumelioti, Z., A. Kiratzi and D. Dreger (2004), The source process of the 2001 July 26 Skyros Island, Geophys. J. Int., 156, 541-548.

Roumelioti, Z., A. Kiratzi and N. Theodulidis (2004), Stochastic strong ground-motion simulation of the 7 September 1999 Athens (Greece) earthquake, Bull. Seism. Soc. Am., 94, 1036-1052.

Saggaf, M.M., and Toksoz, M.N. (1999), An analysis of deconvolution: Modeling reflectivity by fractionally integrated noise, Geophysics, 64, 1093-1107.

Santamaria, I., C.J. Pantaleon, J. Ibanez and A. Artes (1999), Deconvolution of seismic data using adaptive Gaussian mixtures, IEEE Trans. on Geosciences and Remote Sensing. 37, 855-859.

Saragoni, G. R. and G. C. Hart (1974), Simulation of artificial earthquakes, Earthquake Engineering and Engineering Vibration, 4(1), 1-10.

Shieh, C.F., and R.B. Herrmann (1990), Ground roll: Rejection using polarization filters, Geophysics 55, 1216-1222.

Sileny, J. (1998), Earthquake source parameters and their confidence regions by a genetic algorithm with a ‘memory’, Geophys. J. Int. 134, 228-242.

Singh, S.K., J. Pacheco, M. Ordaz and V. Kostoglodov (2000), Source time function and duration of Mexican earthquakes, Bull. Seism. Soc. Am., 90, 468-482.

Somerville, P. (2003), Magnitude scaling of the near fault rupture directivity pulse, Physics of the Earth and Planetary Interiors, 137, 201-212.

Somerville,P., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith and A. Kowada (1999), Characterizing crustal earthquake slip models for the prediction of strong ground motion, Seismological Research Letters,70(1), 59-80.

Suzuki, S. and K. Asano (2000), Simulation of near source ground motion and its characteristics, Soil Dyn. and Earthq. Engng, 20, 125-136.

Thatcher, W., and T. Hanks (1973), Source parameters of southern California earthquakes, J. Geophys. Res., 78, 8547-8576.

Thio, H. K. (2003), The rupture process of the 2002 Alaska earthquake, Geophysical Research Abstracts, 5, 13753, 2003.
Tsuboi, S., D. Komatitsch, C. Ji and J. Tromp (2003), Broadband modeling of the 2002 Denali fault earthquake on the Earth Simulator, Physics of the Earth and Planetary Interiors, 139, 305-312.
Tselentis, G. A.and J. Zahradnik, (2000), The Athens earthquake of September 7, 1999. Bull. Seism. Soc. Am. 90, No. 5, 1143-1160.
Velasco, A.A., C. J. Ammon, and T. Lay (1994), Recent large earthquakes near Cape Mendocino and in the Gorda plate: broadband source time functions, fault orientations and rupture complexities, J. Geophys. Res., 99, 711-728.

Velis, D.R. and T.J. Ulrych (1996), Simulated annealing wavelet estimation via fourth-order cumulant matching, Geophysics 61, 1939-1948.

Wald, D. J. and T. H. Heaton (1994), Spatial and temporal distribution of slip for the 1992 Landers, California earthquake, Bull. Seism. Soc. Am. 84, 668-691.

Wossner, J., M. Treml and F. Wenzel (2002), Simulation of Mw=6.0 earthquakes in the Upper Rhinegraben using empirical Green function, Geophys. J. Int. 151, 487-500.

Wu, Y. M., N.C.Hsiao, T. L. Teng and T.C. Shin (2002), Near-real time seismic damage assessment of the rapid reporting system, TAO, 13, 313-324.

Xu, L. S., Y. T. Chen, T. L. Teng and G. Patau (2002), Temporal-spatial rupture process of the 1999 Chi-Chi earthquake from IRIS and GEOSCOPE long-period waveform data using aftershocks as empirical Green’s functions, Bull. Seism. Soc. Am. 92, 3210-3228.

Yagle, A. E. (1997), Blind deconvolution of sources from the transmission responses of one-dimensional inhomogeneous continuous and discrete layered absorbing media, Inverse Problems, 13, 1137-1151.

Yamanaka, Y. and M. Kikuchi (2004), Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data, J. Geophys. Res., 109, B07307.
Zerva, A., A. Petropulu and P. Y. Bard (1999), Blind deconvolution methodology for site response evaluation exclusively from ground surface seismic recordings, Soil Dyn. and Earthq. Engng, 18, 47-57.
Zhou, Y. H., L. S. Xu and Y. T. Chen (2002), Source process of the 4 June 2000 southern Sumatra, Indonesia earthquake, Bull. Seism. Soc. Am., 25, 2027-2035.
Zhang, W., T. Iwata, K. Irikura, A. Pitarka and H. Sekiguchi (2004), Dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake, Geophy. Res. Lett., 31, L10605.
Zollo, A., A. Bobbio, A. Emolo and A. Herrero (1997), Modelling of ground acceleration in the near source range: the case of 1976, Friuli earthquake (M=6.5), northern Italy, Journal of Seismology, 1, 305-319.

Zollo, A., P. Capuano, and S. Singh (1995), Use of small earthquake records to determine the source function of a large earthquake: An alternative method and an application, Bull. Seism. Soc. Am., 85, 1249-1256.

中文部分
歐國斌 (1993) 嘉南地區地區地測與強地動觀測(I), 國科會大型防災研究成果發表會.。
周鵬程 (2002) 遺傳演算法原理與應用:活用Matlab, 全華科技圖書。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top