跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 18:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱軍浩
研究生(外文):Chun-Hao Chiu
論文名稱:Ti/C元素對PrFeB系複合奈米晶薄帶之磁性及交換藕合效應影響
論文名稱(外文):Effect of Ti/C on the magnetic properties and exchange coupling of PrFeB-type nanocomposite ribbons
指導教授:張文成張文成引用關係
指導教授(外文):W. C. Chang
學位類別:博士
校院名稱:國立中正大學
系所名稱:物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:215
中文關鍵詞:複合奈米晶薄帶磁性
外文關鍵詞:magnetic propertiesnanocomposite ribbons
相關次數:
  • 被引用被引用:13
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本論文採用合金成分分成兩部分:一為Pr2(Fe1-yTiy)23B3(y = 0.018-0.048)、PrxFe82.2-yTiyB17.8-x(x = 11.8-5;y = 2.5-5.5)及Pr9Fe88.5-xTi2.5Bx(x= 7-15);另一部份則以C置換B於Pr9Febal.CoxTiyB11-zCz(x = 0及10;y = 0-4;z = 0-11)合金。針對上述合金所製作之快淬薄帶探討其磁性、相變化及顯微結構,並瞭解添加元素(Ti、C及Co)在PrFeB合金薄帶之效應。實驗結果如下:
1. 適量的Ti元素置換Fe 於Pr2(Fe1-yTiy)23B3合金薄帶可抑制2:23:3及Fe3B相形成且有細化晶粒的效果。在Pr9Febal.Ti2.5Bz合金薄帶中,隨B含量的增加,?Fe相有隨之減少而硬磁2:14:1相增加趨勢。另一方面,微量C(0.5 at%)置換硼於Pr9Febal.B11-zCz合金薄帶不但形成Pr2Fe14(B,C)相且有細化晶粒的效果。且在較高Ti含量(4 at%)之Pr9Febal.Ti4B11-zCz合金薄帶系列中,因為有足夠Ti用以抑制2:23:3及Fe3B相及微量C (0.5 at%)置換B於Pr9Febal.Ti2.5B10.5C0.5合金薄帶形成Pr2Fe14(B,C)相及細化晶粒之作用,致使合金薄帶之磁性值顯著提升。此外,10 at%Co置換Fe於Pr9Febal.Co10Ti4B11合金薄帶會造成晶粒粗化,不但侷限了磁性提升的幅度並且使iHc值降低。唯有以微量C (0.5~2.5 at%)置換B 於Pr9Febal.Co10Ti4B11-zCz合金薄帶,藉由TiC相形成於晶界以阻礙晶粒成長而可獲得細晶粒且均勻顯微結構及本研究中之最佳磁性值。最佳磁性之薄帶成分為具?(Fe, Co)/Pr2(Fe, Co)14(B, C)雙相複合奈米晶顯微組織之Pr9Febal.Co10Ti4B10C1,其磁性質為Br = 10.0 kG、iHc = 10.5 kOe及(BH)max值高達20.2 MGOe且?= -0.092 %/oC及β = -0.504 %/oC。
2. 在Pr9Febal.Co10Ti4B11-zCz合金薄帶中,隨著C含量的增加,矯頑機制由磁區壁拴固型轉向反向磁區孕核成長型主導。就磁化行為而言,Pr9Febal.B11-zCz(C=0~11 at%)合金薄帶之磁化翻轉皆由軟磁相主導。而Pr9Febal.Ti4B11-zCz(C≦0.5 at%)及Pr9Febal.Co10Ti4B11-zCz(C≦2.5 at%)合金薄帶則由硬磁相主導磁化翻轉。
The phase evolution, microstructures and magnetic properties of Pr2(Fe1-yTiy)23B3(y = 0.018-0.048), PrxFe82.2-yTiyB17.8-x (x = 11.8-5;y = 2.5-5.5)and Pr9Fe88.5-xTi2.5Bx (x= 7-15)melt-spun ribbons have been investigated. Because Pr2Fe14C compound is isostructural with Pr2Fe14B, its magnetocrystalline anisotropy field is even larger than that of Pr2Fe14B, the effect of C substitution for B in Pr9Febal.CoxTiyB11-zCz (x = 0及10;y = 0-4;z = 0-11)nanocomposites were also studied. The major results are summarized as follows.
1. The appropriate substitution of Ti element for Fe in Pr2(Fe1-yTiy)23B3 ribbons can suppress the formation of metastable Pr2Fe23B3 and Fe3B phases and result in the presence of large amount of Pr2Fe14B and ?Fe phases with fine grain size. In Pr9Fe88.5-xTi2.5Bx nanocomposites, the volume fraction of Pr2Fe14B phase increases and ?Fe phase decreases with increasing the boron content, giving rise to the increment of iHc and the decrement of Br. On the other hand, for Pr9Febal.TixB11-yCy series ribbons, the addition of 4 at% Ti suppresses the formation of metastable Pr2Fe23B3 phase and ensures the existence of large amount of magnetically hard Pr2Fe14B phase in the ribbons. Besides, a slight C addition can not only form Pr2Fe14(B, C) phase but also refine the grain size, resulting in the improvement of magnetic properties. However, Co substitution for Fe in Pr9Febal.Co10Ti4B11 ribbon merely results in coarser grain size to limit the enhancement of magnetic properties, and decreases the coercivity slightly. Only in the C-containing Pr9Febal.Co10Ti4B11-yCy (1≦y≦2.5) alloy ribbons is beneficial in obtaining a much finer and more homogeneous microstructure due to the formation of TiC to impede grain growth. As a result, ?(Fe, Co)/Pr2(Fe, Co)14(B, C)-type nanocomposites with excellent magnetic properties of Br = 10.0 kG, iHc = 10.5 kOe, (BH)max = 20.2 MGOe and ?= -0.092 %/oC, β = -0.504 %/ oC could be obtained in Pr9Febal.Co10Ti4B10C1 ribbons.
2. In Pr9Febal.Co10Ti4B11-zCz ribbons, the coercivity mechanism varies from domain wall pinning to reverse domain nucleation with increasing carbon content. For magnetization behavior, the magnetization reversal of Pr9Febal.B11-zCz (C= 0~11 at%) ribbons is mainly dominated by soft phase. However, the magnetization reversal of Pr9Febal.Ti4B11-zCz (C≦0.5 at%) and Pr9Febal.Co10Ti4B11-zCz (C≦2.5 at%) ribbons are dominated by hard phase.
目錄
中文摘要……………………………………………………………........I
英文摘要…………………………………………………………….......II
誌謝……………………………………………………………............III
目錄……………………………………………………………..............IV
表目錄……………………………………………………………............V
圖目錄…………………………………………………………….........VI
第一章 緒論……………………………………………………………..1
1-1 前言……………………………………………………………..1
1-2 磁性材料分類簡介…………………………………………..…4
1-3 稀土永久磁石之發展簡介………...………………...…………7
1-4 RFeB合金之顯微結構簡介……………………………16
1-5 雙相奈米複合永磁材料……………………………….18
1-6 雙相奈米晶複合永磁材料的特徵……………………20
1-7 雙相納米複合永磁材料的製造方式之一…………..22
1-8 新型複合奈米晶之磁特性比較………………………26
1-9 R2Fe14C相關文獻……………………………………….34
1-10 研究動機與目的……………………………………………..37

第二章 理論基礎………………………………………………………39
2-1 磁滯曲線………………………………………………………39
2-2 材料磁性起源…………………………………………………41
2-3 磁性體分類……………………………………………………43
2-4 磁異向性………………………………………………………46
2-5 稀土磁石之矯頑機制簡介……………………………48
2-6 矯頑機制之基本理論-反向磁區孕核模型………….52
2-7 交換藕合作用………………………………………….58
2-8 R2Fe14B化合物間的居里溫度與交換作用……………65
2-9 析出物與晶粒的成長………………………………….67

第三章 實驗方法………………………………………………………68
3-1實驗流程.....................................................................................68
3-2 合金成分………………………………………………………69
3-3 奈米晶材料樣品之製備………………………………………70
3-4 樣品量測與分析………………………………………………74

第四章 Pr(Fe,Ti)B複合奈米晶之磁性、相變化及顯微結構……..…78
4-1 Ti置換Fe對Pr2Fe23B3奈米晶薄帶影響……………………..78
4-2 由Pr2Fe14B 至Pr2Fe23B3區域合金薄帶之磁性、相變化及顯微結構探討……………………………..……………………...88
4-3 硼含量的變化對Pr9Febal.Ti2.5Bz合金薄帶之磁性、相變化及顯微結構探討…………………………………………………...99

第五章 PrFe(B, C)型複合奈米晶之磁性、相變化及顯微結構…….108
5-1 C元素置換B對Pr9Febal.B11 (at%)合金薄帶磁性、相變化及顯微結構的影響……………………………………………...109
5-2 C元素置換B對Pr9Febal.Ti2.5B11 (at%)合金薄帶磁性、相變化及顯微結構的影響………………………………………...119
5-3 C元素置換B對Pr9Febal.Ti4B11 (at%)合金薄帶磁性、相變化及顯微結構的影響…………………………………………...130
5-4 C元素置換B對Pr9Febal.Co10Ti4B11 (at%)合金薄帶磁性、相變化及顯微結構的影響……………………………………...141
5-5 綜合討論……………………………………………………..157
5-6 可逆與不可逆磁化…………………………………………..164
5-7 矯頑機制……………………………………………………..180

第六章 綜合分析與討論………………………………………..……185

第七章 結論……………………………………………………..……192

參考文獻………………………………………………………………195
參考文獻
[1] 宛德福及馬興隆,磁性物理學,1999年4月。
[2] J. Hall, A. Fenocchi and Mr. Eternad, 13th Int. Workshop on RE Magnets & their Applications, 329 (1994).
[3] 周壽增 等編著,稀土永磁材料與應用, p21~22 (1989)。
[4] W. M. Hubbard, E. Adams and J. V. Gilfrich, J. Appl. Phys. 31, 368 (1960).
[5] G. Hoffer and K. Strnat, IEEE Trans. Magn. 2, 487(1996).
[6] K. J. Strnat, Cobalt 36, 133 (1967).
[7] K. J. Strnat, G. Hoffer, J. Olson, W. Ostertag and J. J. Becker, J. Appl. Phys. 38, 1001 (1967).
[8] E. A. Nesbitt et al., Appl. Phys. Lett. 12, 361 (1968).
[9] Velge, W. A. J. T. et al., J. Appl. Phys. 39, 336 (1968).
[10] Buschow, K. H. J. et al., Philips Tech Rew 29, 1717 (1968).
[11] Das, D. K., IEEE. Trans. On magn., MAG-5, No. 3, 214 (1969).
[12] Benz M. G. et al., Cobalt No. 50, 11 (1971).
[13] D. L. Martin et al., Cobalt, 11 (1971).
[14] A. C. Epmopehko et al., IEEE Trans. Magn. 17, 499 (1973).
[15] T. Ojima et al., J. Appl. Phys. 4, 671 (1977).
[16] A. E. Clark et al., Appl. Phys. Lett. 42, 160 (1972).
[17] A. E. Clark, Appl. Phys. Lett. 23, 642 (1973).
[18] J. J. Croat, Appl. Phys. Lett. 37, 1096 (1980).
[19] J. J. Croat, J. Appl. Phys. 52, 2509 (1981).
[20] J. J. Croat, Appl. Phys. Lett. 39, 357 (1981).
[21] N. C. Koon and B. N. Das, Appl. Phys. Lett. 39, 840 (1981).
[22] J. J. Becker, J. Appl. Phys. 55, 2067 (1984).
[23] H. H. Stadcimaer and H. K. Park, Z. Metallkde 72, 417 (1981).
[24] G. C. Hadjipanayis, R. C. Hazelton and K. R. Lawless, J. Appl. Phys. 55, 2073 (1984).
[25] J. J. Croat, J. F. Herbst, R. W. Lee and F. E. Pinkerton, J. Appl. Phys. 55, 2073 (1981).
[26] D. J. Sellmyer, A. Ahmed, G. Muench and G. Hadjipanayis, J. Appl. Phys. 55, 2078 (1984).
[27] M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto and Y. Matsaura, J. Appl. Phys. 55, 2083 (1984).
[28] J. M. D. Coey and Hong Sun, J. Magn. Magn. Mater. 97, 251 (1990).
[29] 日本產經新聞四月十六日報 (1991)。
[30] Y. Kaneko, R&D Section of NEOMAX Div., Sumitomo Special Metals Co., Ltd., “Development of Super High Performance Magnet Having 444 kJ/m3 (55.8MGOe)”,日本應用磁氣學會誌,vol. 24, No. 1, 13 (2000).
[31] W. Rodewald, B. Wall, M. Katter, and K. Uestuener, IEEE Trans. Magn. 39, 2932 (2003).
[32] A. Sakamoto, T. Hidaka, C. Ishizaka, N. Uchida, and A. Fukuno, Trans. Mater. Res. Soc. Jap.
[33] Yutaka Matsuura, J. Magn. Magn. Mater. (In press).
[34] E. A. Nesbitt, J. H. Wernick, and E. Corenzwit, J. Appl. Phys. 30, 365 (1959).
[35] Kari J. Strnat, IEEE. Trans. MAG-23, No.5, 2094 (1987).
[36] R. W. Lee, Appl. Phys. Lett. 46, 790 (1985).
[37] M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, S. Hirosawa, J. Appl. Phys. 57, 4094 (1985).
[38] J. F. Herbst, J. J. Croat, F. E. Pinkerson, and W. B. Yelon, Phys. Rev. B 29, 4173 (1984).
[39] E. C. Stoner, E. P. Wohlfarther, Phil. Trans. Roy. Soc. A-240, 599 (1948). or B. D. Cullity, Introduction to magnetic materials, Addison-Wesley Publishing Company, Inc., 337 (1972).
[40] Croat J J. 13th Int. Workshop on Rare Earth Magnets & their Application Sept. (University of Birmingham) 65 (1994).
[41] R. Coehoorn, D. B. Mooij, J. P. W. Duchateau, and K. H. Buschow, J. J. de Phys. 49, C8, 669 (1988).
[42] R. Coehoorn, D.B. DeMooij, and C. DeWaard, J. Magn. Magn. Mater. 80, 101 (1989).
[43] E. F. Kneller, and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).
[44] Z. H. Cheng, B. G. Shen, and F. W. Wang, Phys. Rev. B 51, 12433 (1995).
[45] Z. H. Cheng, B. G. Shen, and M. X. Mao, and J. J. Sun, Phys. Rev. B 52, 9247 (1995).
[46] B. G. Shen, J. X. Zhang, and L. Y. Yang, J. Magn. Magn. Mater. 96, 335 (1991).
[47] B. G. Shen, J. X. Zhang, and L. Y. Yang, J. Magn. Magn. Mater. 89, 195 (1990).
[48] L. Folks, R. Street, and R. C. Woodward, J. Magn. Magn. Mater. 147, 360 (1995).
[49] C. J. Yang and E. B. Park, IEEE Trans. Magn. 32, 4428 (1996).
[50] C. J. Yang and E. B. Park, J. Magn. Magn. Mater. 168, 278 (1997).
[51] M. X. Mao, Z. H. Cheng, and C. L. Yang, J. Appl. Phys. 73, 698 (1993).
[52] J. Ding, R. Street, and P. G. McCormick, J. Magn. Magn. Mater. 140, 1071 (1995).
[53] B. G. Shen, L. Y. Yang, and J. Z. Liang, J. Phys: Condens. Mater. 4,
7247 (1992).
[54] S. Hirosawa, H. Kanekiyo, and M. Uehara, J. Αppl. Phys. 73, 6488 (1993).
[55] S. Hirosawa, and H. Kanekiyo, Mater. Sci. Eng. Α 217/218, 367
(1996).
[56] H. Kanekiyo, M. Uehara, and S. Hirosawa, IEEE Trans. Magn. 29, 2863 (1993).
[57] H. Kanekiyo, M. Uehara, and S. Hirosawa, Mater. Sci. Eng. Α 181/182, 868 (1994).
[58] K. Kajiwara, K. Hono, S. Hirosawa, Mater. Trans. JIM 42, 1858
(2001).
[59] D. H. Ping, K. Hono, and Hirosawa, J. Αppl. Phys. 83, 7769 (1998).
[60] D. H. Ping, K. Hono, H. Kanekiyo, and S. Hirosawa, IEEE Trans. Magn. 35, 3262 (1999).
[61] T. Zhao, Q. F. Xiao, Z. D. Zhang, M. Dahlgren, R. Grössinger, K. H. J. Buschow, and F. R. de Boer, Αppl. Phys. Lett. 75, 2298 (1999).
[62] B. D. Cullity, Introduction to magnetic materials, Addison-Wesley Publishing Company, Inc., 207 (1972).
[63] T. Schrefl, J. Fidler, and H. Kronmüller, Phys. Rev. B 49, 6100 (1994).
[64] A. Manaf, R. A. Buckley, and H. A. Davis, J. Magn. Magn. Mater. 128, 302 (1993).
[65] G. C. Hadjipanayis and L. Withanawasam, IEEE Trans. Magn. 31, 3596 (1995).
[66] I. Panagiotopoulos and G. C. Hadjipanayis, J. Appl. Phys. 79, 4827 (1996).
[67] Y. Q. Wu, D. H. Ping, K. Hono, M. Hamano, and A. Inoue, J. Αppl. Phys. 87, 8658 (2000).
[68] X. Y. Xiong, Y. Q. Wu, and K. Hono, Proceeding on the 17th International Workshop on Rare Earth Magnets and Their Applications, 796 (2002).
[69] W. C. Chang, and D. M. Hsing, J. Αppl. Phys. 79, 4843 (1996).
[70] W. C. Chang, D. M. Hsing, B. M. Ma, and C. O. Bounds, IEEE Trans. Magn. 32, 4425 (1996).
[71] W. C. Chang, S. H. Wu, B. M. Ma, and C. O. Bounds, J. Magn. Magn. Mater. 167, 65 (1997).
[72] W. C. Chang, S. H. Wu, B. M. Ma, and C. O. Bounds, J. Αppl. Phys. 81, 4453 (1997).
[73] W. C. Chang, S. H. Wu, B. M. Ma, C. O. Bounds, and S. Y. Yao, J. Αppl. Phys. 83, 2147 (1998).
[74] W. C. Chang, D. Y. Chiou, S. H. Wu, B. M. Ma, and C. O. Bounds, Αppl. Phys. Lett. 72, 121 (1998).
[75] W. C. Chang, S. H. Wang, S. J. Chang, and M. Y. Tsai, IEEE Trans. Magn. 35, 3265 (1999).
[76] W. C. Chang, S. H. Wang, S. J. Chang, and Q. Chen, IEEE Trans. Magn. 36, 3312 (2000).
[77] W. C. Chang, S. H. Wang, S. J. Chang, and H. W. Chang, Proceeding on the 16th International Workshop on Rare Earth Magnets and Their Applications, 605 (2000).
[78] W. C. Chang, I. A. Chen, S. J. Chang, and C. H. Yu, Proceeding on the 16th International Workshop on Rare Earth Magnets and Their Applications, 613 (2000).
[79] V. Neu and L. Schultz, J. Αppl. Phys. 90, 1540 (2001).
[80] X.Y. Zhang, Y. Guan, and J. W. Zhang, Αppl. Phys. Lett. 80, 1966 (2002).
[81] L.H. Lewis, and V. Panchanathan, J. Αppl. Phys. 85, 4883 (1999).
[82] X.K. Sun, J. Zhang, Y.L. Chu, W. Liu, B.Z. Cui, and Z.D. Zhang, Αppl. Phys. Lett. 74, 1740 (1999).
[83] J. Bauer, M. Seeger, Α. Zern, and H. Kronmüller, J. Αppl. Phys. 80, 1667 (1996).
[84] H. W. Chang, C. H. Chiu, and W. C. Chang, Appl. Phys. Lett. 82, 4513 (2003).
[85] H. W. Chang, W. C. Chang, M. D. Lee, H. H. Hamdeh, X. Zhang, and J. C. Ho., J. Magn. Magn.Mater. 239, 461 (2002)
[86] H. W. Chang, W. C. Chang, J.C. Ho, W.M. Hikal and H.H. Hamdeh, Physica B 327, 292 (2002).
[87] H. W. Chang, W. C. Chang, J.C. Ho, M. Unver, and H.H.Hamdeh, J. Appl. Phys. 93, 4027 (2003).
[88] H. W. Chang, C. H. Chiu, and W. C. Chang, IEEE Trans. Magn. 40, 2871 (2004).
[89] H. W. Chang, C. H. Chiu, and W. C. Chang, Trans. Mater. Res. Soc. Jap. 29, 1709 (2004).
[90] H. W. Chang, C. H. Chiu, W. C. Chang, and S. K. Chen, Phys. Stat. Sol. (c) 12, 3394 (2004).
[91] H. W. Chang, C. H. Chiu, C. W. Chang, W. C. Chang, Y. D. Yao, and A. C. Sun, J. Alloys and Compds. 402, 269 (2005).
[92] H. W. Chang, C. H. Chiu, C. W. Chang, C. H. Chen, W. C. Chang, Y. D. Yao, and A. C. Sun, J. Alloys and Compds. in press (2006).
[93] H.W. Chang, C.H. Chiu, C.W. Chang, C.H. Chen, W.C. Chang, and Y.D. Yao, J. Magn. Magn. Mater. in press (2006).
[94] H. W. Chang, C. H. Chiu, C. W. Chang, W. C. Chang, A. C. Sun, and Y. D. Yao, Scripta Materialia. (accepted) (2006).
[95] W. Lui, Z. Zhang, X. K. Sun, Y. C. Chuang, F. Yang, F. R. de Boer, Solid State Commun. 76, 1375 (1990)
[96] K. H. J. Buschow, D. B. de Mooij, C. J. M. Denissen, J. Less-Commun. Met. L41, (1988)
[97] F. Xing, and W. W. Ho, J. Appl. Phys. 67, 4604 (1990).
[98] L. X. Liao, X. Chen, Z Altounian, and D. H. Ryan, Appl. Phys. Lett. 60, 129 (1992).
[99] 蔡世慧,R2Fe17-xMxCy(R=Rare earth ;M=Transition Metal)合金之 晶體結構與磁性之研究,國立中正大學碩士論文 (1996)。
[100] M. Gueramian, A. Bezinge, K. Yvon, and J. Muller, Solid State Commun. 64, 639 (1987).
[101] N. C. Liu and H. H. Stadelmaier, J. Appl. Phys. 61, 3574 (1987).
[102] D. B de Mooij and K. H. J. Buschow, J. Less-Common Metals 142, 349 (1988).
[103] B. Grieb, K. Fritz, and E. Th. Henig, J. Appl. Phys. 70, 6447 (1991).
[104] M. Leonowicz, H. A. Davies, and S. Wojciechowski, J. Appl. Phys. 76, 6244 (1994).
[105] J. B. Yang, O. Gutfleisch, A. Handstein, D. Eckert, and K. H. Müller, Appl. Phys. Lett. 76, 3627 (2000).
[106] Z. C. Wang, H. A. Davies, S. Z. Zhou, M. C. Zhang, and Y. Qiao, J. Appl. Phys. 91, 7884 (2002).
[107] X. Y. Chen, Zh. L. Jiang, L. Zhang, Ch. P. Yang, F. M. Bai, L. Han, H. M. Chen, and J. Zhu, J. Magn. Magn. Mater. 247, 26 (2002).
[108] Wen-yong Zhang, Chuang-bing Rong, Jian Zhang, Bao-gen Shen, Hong-lin Du, Jian-sheng Jiang, and Ying-chang Yang, J. Appl. Phys. 92, 7647 (2002).
[109] Wen-yong Zhang, Hong-lin Du, Jian-sheng Jiang, Ben-pei Chang, Ying-chang Yang, and Bao-gen Shen, J. Mang. Mang. Mang. 257, 403 (2003).
[110] W. Y. Zhang, H. W. Chang, C. H. Chiu, J. Z. Han, and W. C. Chang, J. Alloys Compd. 379,28 (2004).
[111] Y. L. Sun, C. H. Chiu, C. W. Chang, H. W. Chang, and W. C. Chang, J. Appl. Phys. 97, 10K309 (2005).
[112] A. H. Li, C. H. Chiu, H. W. Chang, and W. C. Chang, J. Appl. Phys. 98, 044315 (2005).
[113] S. Hirosawa, H. Kanekiyo, T. Miyoshi, J. Mang. Mang. Mang. 218, 58 (2004).
[114] A. Manaf, R. A. Buckley, H. A. Davis and M. Leonowicz, J. Magn. Magn. Mater. 101, 360 (1991).
[115] J. Bauer, M. Seeger, A. Zern and H. Kronmüller, J. Appl. Phys. 80, 1667 (1996).
[116] H. Kanekiyo, M. Uehara, and S. Hirosawa, IEEE Trans. Magn. 29, 2863 (1993).
[117] M. Sagawa, Proceeding on the 16th International Workshop on Rare
Earth Magnets and Their Applications, 17 (2000).
[118] 羅陽,新世紀NdFeB磁體之發展,1 (2002).
[119] C. Abache and H. Oesterreicher, J. Αppl. Phys. 57, 4112 (1985).
[120] S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, and H. Yamauchi, J. Αppl. Phys. 59, 873 (1986).
[121] E. B. Boltich, E. Oswald, M. Q. Huang, S. Hirosawa, W. E. Wallace, and E. Burzo, J. Αppl. Phys. 57, 4106 (1985).
[122] W. Y. Zhang, H. W. Chang, C. H. Chiu and W. C. Chang, Physica B. 344, 201 (2004).
[123] S. Legvold, “Ferromagnetic Materials’’ edited by E. P. Wohlfarth 1,
190 (1980).
[124] J. J. Becker, IEEE Trans. Magn. 12, 965 (1976).
[125] G. Hilscher, R. Grossinger, S. Heisz, H. Sassik, and G. Wiesinger, J.
Magn. Magn. Mater. 54, 577 (1986).
[126] R. Ramesh and G. Thomas, Mater. Sci. & Eng. B3, 435 (1989).
[127] K. D. Durst and H. Kronmuller, Proc. of 8th Int. Workshop on RE
Magnets, 727 (1985).
[128] J. D. Livingston, “Soft and Hard Magnetic Materials with Applications”, (Edited by J. A. Salsgiver) 72 (1986).
[129] P. Gaunt, Phil. Mag. B48, 261 (1983).
[130] F. E. Pinkerton, and C. D. Fuerst, J. Appl. Phys. 69, 5817 (1991).
[131] F. E. Pinkerton, J. Appl. Phys. 63, 5427 (1988).
[132] F. E. Pinkerton, and C. D. Fuerst, J. Appl. Phys. 67, 4753 (1990).
[133] G.Hilsccheer, R.Grossinger, S. Heisz, H. Sassik, and G.Weisinger, J. Magn. Magn. Mater. 84, 577 (1990).
[134] H. Kronmüller, “The Nucleation Fields of Uniaxial Ferromagnetic Crystals”, Phys. Stat. Sol. (b) 130, 136 (1985).
[135] G. Rieger, M. Seeger, L. Sun, and H. Kronmuller, J. Magn. Magn. Mater. 151, 193 (1995).
[136] M. Seeger, D. Kohler, and H. Kronmüller, J. Magn. Magn. Mater. 130, 165 (1994).
[137] X. C. Kou, H. Kronmüller, D.Givord, and M.F.Rossignol, Phys. Rev. B 50, 3849 (1994).
[138] J. Bauer, M. Seeger, and H. Kronmüller, J. Magn. Magn. Mater. 139, 323 (1995).
[139] M. Seeger, D. Köhler, and H. Kronmüller, J. Magn. Magn. Mater. 130, 165 (1994).
[140] J. Bauer, M. Seeger, A. Zern, and H. Kronmüller, J. Appl. Phys. 80, 1667 (1996).
[141] D. Goll, M. Seeger, and H. Kronmüller, J. Magn. Magn. Mater. 185, 49 (1998).
[142] E. F. Kneller, and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).
[143] H. Fukunaga, and H. Inoue, Jpn. J. Appl. Phys. 31, 1347 (1992).
[144] T. Schrefl, J. Fidler, and H. Kronmüller, Jpn. J. Appl. Phys. 76, 7503 (1994).
[145] Robert E. Reed-Hill, Reza Abbaschian,物理冶金, 16-21
[146] E. P. Wohlfarth, J. Appl. Phys. 29, 595 (1958).
[147] P. E. Kelly, K. O`Grady, P. I. Mayo, and R. W. Chantrell, IEEE Trans. Magn.25, 3881 (1989).
[148] R. Fischer, T. Schrelf, H. Kronmüller, and J. Fidler, J. Magn. Magn. Mater. 153, 35 (1996).
[149] Zhongmin Chen, Benjamin R. Smith, Bao-Min Ma, Mei-Qing Huang, Ya-Qiao Wu, and Matthew J. Kramer, IEEE Trans. Magn. 39, 2938 (2003).
[150] B. D. Cullity, Elements of x-ray diffraction, Addison-Wesley Publishing Company, Inc., 281 (1978).
[151] 孫毓倫,Pr2(Fe, Co)14(B, C)/?Fe複合奈米晶薄帶之磁性質與相變化之研究,國立中正大學碩士論文 (2003)。
[152] Zhongmin Chen, Yong Zhang, Yuquan Ding, G. C. Hadjipanayis, Qun Chen, and Baomin Ma, J. Appl. Phys. 85, 5908 (1999).
[153] W. C. Chang, J. K. Chang, H. W. Chang, and B. M. Ma, J. Appl. Phys. 91, 8171 (2002).
[154] M. J. Kramer, C. P. Li, K. W. Dennis, R. W. McCallum, C. H. Sellers, D. J. Branagan, and J. E. Shield, J. Appl. Phys. 81, 4459 (1997).
[155] 黃俊敏,納米晶Nd2Fe14B/?Fe雙相合金之磁性,國立清華大學博士論文 (1995)。
[156] 方昭訓,雙相納米晶鐵釹硼旋淬薄帶的磁交換作用,國立清華大學博士論文 (1996)。
[157] 謝明富,固定鐵硼比例之納米晶NdFeB合金磁性之研究,國立清華大學博士論文(1996)
[158] Zuocheng Wang, Shouzeng Zhou, Yi Qiao, Maocai Zhang and Run Wang, J. Alloys Comp. 299, 258 (2000).
[159] Z. Q. Jin, H. Okumura, Y. Zhang, H. L. Wang, J. S. Munoz, G.C. Hadjipanayis, J. Magn. Magn. Mater. 248, 216 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top