(3.236.228.250) 您好!臺灣時間:2021/04/17 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳紋琦
研究生(外文):Wen-chi Chen
論文名稱:相位移長週期光纖光柵的製作及特性探討
論文名稱(外文):Fabrication and Characterization of Phase Shift Long Period Fiber Grating
指導教授:湯兆崙
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:78
中文關鍵詞:折射率氯化鈉相位移金奈米溫度長週期光纖光柵
外文關鍵詞:colloidal Au nanoparticlesphase-shift long-period fiber gratings
相關次數:
  • 被引用被引用:9
  • 點閱點閱:187
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本論文是採用光罩法來製作相位移長週期光纖光柵(Phase Shift Long Period Fiber Grating;PS-LPFG)並探討其特性。由實驗結果中得知,以相位移振幅光罩製成之長週期光纖光柵,因相位移的影響,使原本一個共振波長分裂成兩個,隨著相位移變化,相位移長週期光纖光柵的共振波長與共振強度也有所差異。相位角會影響共振強度的分配,曝照時間會影響共振波長位置。當光罩的相位移數目增加以及光柵週期數目改變時,所得到的共振波長與共振強度也不同,利用改變此變數將可獲得特殊且多樣性的光纖光柵。
當外界環境改變時,PS-LPFGs之共振波長將隨之飄移。對應變而言,其應變的敏感度約為0.1 pm/με。對溫度而言,溫度增加時,共振波長會往長波長飄移,溫度敏感度為0.04~0.08nm/℃。對氯化鈉溶液而言,氯化鈉溶液濃度敏感度為0.34nm/M。對折射率而言,折射率由1.33增加至1.41時波長漂移約7~8nm。這些結果都與一般傳統的光纖光柵吻合,敏感度有稍微的提高。鍍上金奈米粒子後的相位移長週期光纖光柵,對於外在環境改變時,有較好的敏感度。
我們將長週期光纖光柵寫入微拉式光纖後,得到的共振波長與共振強度與一般光纖差異很大,主要是因為Core和Cladding的邊界條件改變。對於外界環境改變時,所得到的結果只有溫度變因與長週期光纖光柵符合,其他變因會使得共振波長的行為改變。

關鍵詞: 相位移,長週期光纖光柵,溫度,金奈米,氯化鈉,折射率
The aim of this thesis is to fabricate the phase-shift long-period fiber gratings (PS-LPFGs) and to investigate their characteristics. We have fabricated PS-LPFGs by using several kinds of phase-shift amplitude masks with 193nm ArF excimer laser. Results showed that one resonance wavelength was split into that of two due to the effects of phase shift introduced. The phase shift angle will influence the distributions of the resonance peak depths. The fabrication parameters will influence the position of the resonance wavelength. We can get the special and diversified LPFGs by changing the figure of the phase shift angle and the length of the grating.
The characteristics of LPFGs such as temperature, strain, refractive index, and NaCl solution were investigated. When temperature is increased the resonance wavelength of LPFGs is shifted to either the longer or the shorter wavelength. The sensitivity of temperature response of LPFGs was positive (0.04~0.08nm/℃). The strain sensitivity was found to be 0.1 pm/με. The sensitivity of NaCl solution concentrations was found to be 0.34nm/M. The resonance wavelength shifted 7~8nm when the refracting indices increase from 1.34 to 1.41. These results are comparable with conventional optic fiber grating. Better sensitivity was obtained when the surface portion of grating was modified by colloidal Au nanoparticles.
Finally, we have fabricated LPFG on a tapered fiber. The resonance wavelength and peak depth were widely different from typical LPSGs because the change on the boundary condition between core and cladding. Their characteristics were different from LPFGs except that of temperature response.
Abstract………………………………………………………………….Ⅰ
摘要……………………………………………………………………..Ⅱ
目錄……………………………………………………………………..Ⅲ
圖目錄…………………………………………………………………..Ⅵ
表目錄…………………………………………………………………..Ⅸ
第一章 緒論………………………………………………………….….1
1-1 研究背景……………………………………………………….1
1-2 研究動機與目的……………………………………………….2
1-3 本文簡介……………………………………………………….2
第二章 光纖及光纖光柵基本原理……………………………………..4
2-1 光纖基本原理介紹…………………………………………….4
2-1-1光纖簡介………………………………………………...4
2-1-2傳統光纖的基本構造…………………………………...4
2-1-3光在光纖中傳播的原理………………………………...5
2-1-4光纖中的重要參數……………………………………...6
2-2 光纖光柵相位匹配條件……………………………………….6
2-3 模態耦合理論(Coupled-Mode Theory)…………….……........9
2-3-1長週期光纖光柵(LPFG)……………………..……….…9
2-3-2相位移長週期光纖光柵(PS-LPFG)……………….…..11
2-4以紫外光曝照量控制相位移…………………………………13
2-5載氫的影響與光敏性…………………………………………14
第三章 光纖光柵製作與實驗方法……………………………………17
3-1長週期光纖光柵的製作技術……………………..…..17
3-2長週期光纖光柵的應用…………………………………...20
3-3實驗裝置與實驗流程……………………………………...23
3-3-1實驗流程圖…………………………………………….25
3-3-2實驗裝置圖…………………………………………….27
3-4 Amplitude Mask 製作…………………………………...……27
3-4-1 Amplitude Mask製作過程…………………………….28
3-4-2 Mask分析…………..……………………..…………...29
第四章 實驗結果與討論………………………………………………32
4-1製作PS-LPFG時光譜的變化過程…………………………...32
4-2典型的PS-LPFG………………………….…………………...35
4-3退火影響………………………………….…………………...39
4-4特性分析………………………………………………………41
4-5變化的PS-LPFG………………………………………………42
4-5-1週期大於2π的情況……………………………...……42
4-5-2 L1與L2不相同的情況……………………….………44
4-5-3兩個相位移的情況…………………………….………45
4-5-4三個相位移的情況……………………………...……..46
4-5-5兩個光柵串聯的情況………………………….………47
4-6外界變化對PS-LPFG的影響……………………..………….48
4-6-1溫度變化對PS-LPFG的影響………………………….49
4-6-2應力變化對PS-LPFG的影響……………………..…..51
4-6-3氯化鈉溶液對PS-LPFG的影響………………………52
4-6-4折射率對PS-LPFG的影響……………………………54
4-6-4鍍金奈米粒子於PS-LPFG表面………………………56
4-7 LPFG on Tapered Fiber…………………………………..……61
4-7-1 LPFG on Tapered Fiber之溫度測試…………………..63
4-7-2 LPFG on Tapered Fiber之氯化鈉溶液測試…………..65
4-7-3 LPFG on Tapered Fiber之折射率測試…………….….67
4-8製作長週期光纖光柵於特殊光敏光纖………………..……..68
第五章 結論……………………………………………………………72
第六章 參考文獻………………………………………………………75
附錄……………………………………………………………………..78
1. J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin “All-silica single-mode optical fiber with photonic crystal cladding ,” Opt.Lett. 21, 1547-1549,(1996).
2. Vengsarlar, A. M., Lemaire, P. J., Judkins, J. B., Bhatia, V., Sipe, J. E.,
nd Erdogan , T., “Long-Period Fibre Gratings as Band-Rejection Filters,” OFC’95 Technical Digest, PD4-2, 65-67, (1995).
3.孫清華編譯, 光纖通訊 ,全華科技圖書股份有限公司,民87
4.湯兆崙,王劍能,2004年6月,『光纖鋪面監測系統之發展與應用』,土木水利,第三十一卷, 第三期,第74-77頁
5.龔祖德, 光纖通訊技術, 全華科技圖書股份有限公司,民89
6. Erdogan, T., “ Fiber Grating Spectra, ” Journal of Lightwave Technology ,” 15, No. 8, 1277-1294, (1997).
7.Michiko Harumoto, Masakazu Shigehara, and Hiroshi Suganuma,’’ Gain-Flattening Filter Using Long-Period Fiber Gratings ,” JOURNAL OF LIGHTWAVE TECHNOLOGY, 20, No. 6, 1027-1033, (2002).
8.Lemaire,P.J.,et al. “High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers ,” lectronics Lett, 29,1191-1193, (1993).
9. Abdelrafik Malki , Georges Humbert , Youcef Ouerdane , Aziz Boukhenter , and Azzedine Boudrioua , "Investigation of the writing mechanism of electric-arc-induced long-period fiber gratings ," Opt.Lett. 42, No19,3776-3779, (2003).
10. Vengsrlar , A. M. ,Lemaire , P. J. , Judkins , J. B. , Bhatia , V . , Erdogan , T. , and Sipe , J. E. , "Long-Period Fiber Gratings as Band-Rejection Filters ," Journal of Lightwave Technology,14,No.1,58-65,(1996).
11. T. Allsop, F. Floreani, K. Jedrzejewski, P. Marques, R. Romero, D. Webb and I. Bennion "Refractive index sensing with long-period grating fabricated in biconical tapered fibre ," ELECTRONICS LETTERS ,41, No. 8, (2005).
12. O. Deparis, R. Kiyan, O. Pottiez, and M. Blondel "Bandpass filters based on p-shifted long-period fiber gratings for actively mode-locked erbium fiber lasers," OPTICS LETTERS, 26, No. 16 , 1239-1241, (2001).
13. Yinian Zhu, Ping Shum, Hui-Wen Bay, Xiaoyan Chen, Ching-Hwee Tan, and Chao Lu "Wide-passband, temperature-insensitive, and compact p-phase-shifted long-period gratings in endlessly single-mode photonic crystal fiber," OPTICS LETTERS , 29, No. 22, 2608-2610, (2004).
14. Guan, B. O., Tam, H. Y., Ho, S. L., Liu, S. Y., and Dong, X. Y., “Growth of Long-Period Gratings In H2-Loaded Fiber After 193-nm UV Inscription,” IEEE Photonics Technology Lett ,12, No. 16, 642-644 , (2000).
15. 廖俊傑、孫迺翔, “長週期光纖光柵傳輸效應之研究”, OPT2003 Proceedings II, FC3-8, 251-253, (2005).
16. Lee, B. H., Chun, Y. J., and Peak, U. C., “Dispersion Effect on Long-Period Fiber Gratings,” Opt. Lett , 26, 1600-1602 , (1999).
17.Trevor W. MacDougall ,Saeed Pilevar ,Charles W. Haggans ,Marvin A. “Generalized Expression for the Growth of Long Period Grating”IEEE Photonics Technology Lett ,10 ,No.10 ,1449-1451, (1998).
18. Sungchul Kim, Yoonchan Jeong, Seungwoo Kim..etc. “ Control of the characteristics of a long-period grating by cladding etching ,” APPLIED OPTICS, 39, No. 13, 2038-2042, (2000).
19. Young-Geun Han,Sang Bae Lee..etc “ Simultanous measurement of temperature and strain dual long-period fiber gratings with controlled temperature and strain sensitivities ,” OPTICS EXPRESS, 11, No.5,476-481 (2003).
20. Jang, J. N., Kim, S. Y., Kim, S. W., and Kim, M. S., “Novel Temperature Insensitive Long-Period Grating by Using Refractive Index of the Outer Cladding,” OFC’00 Technical Digest, Tub4-1, 9-31, (2000).
21.Lee, B. H., Kim, Y. J., Chung, Y. J., Han, W. T., and Peak, U. C., “Analytic Solution for Cascaded Long-Period Fiber Gratings,” IEICE Trans. Commun., E84-B, No. 5, 1247-1254, (2001).
22.Han, Y. G., Lee, B. H., Han, W. T., Peak, U. C., and Chung, Y., “Controllable Transmission Characteristics of Multi-Channel Long Period Fiber Gratings,” IEICE Trans. Commun , E84-B , No. 5, 1236-1240, (2001).
23.Zenghua, X., Chen, G., Li, T., and Jian, S., “EDFA Gain Spectrum Flattering Based on Long Period Fiber Grating,” IEEE Photonics Technology Lett, 13, No. 4, 332-334, (2001).
24.Mimura, Y., Mizuno, K., Namiki, S., Tashiro, Y., emori, Y., Miyazawa, M., Tsud, T., Nishiyama, K., Yasuo, U., and Toshihiko, O., “Gain-Flattening Filters with Autonomous Temperature Stabilization of EDFA Gain,” Furukawa Review, No. 20, 21-25, (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔