跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/26 22:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃國峰
研究生(外文):Kuo-Feng Huang
論文名稱:以CO2雷射製作長週期光子晶體光纖光柵及特性探討
論文名稱(外文):Fabrication and Characterization of Long Period Photonic Crystal Fiber Grating using a CO2 Laser
指導教授:湯兆崙
指導教授(外文):Jaw-Luen Tang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:89
中文關鍵詞:長週期光子晶體光纖光
外文關鍵詞:Long Period Photonic Crystal Fiber
相關次數:
  • 被引用被引用:2
  • 點閱點閱:328
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文是採用二氧化碳雷射脈衝法,在PM-1550-01 光子晶體光纖,製作長
週期光柵並探討其特性。在指定波長的範圍,探討共振波長的形成位置、強度和
數目,並且找出合適的共振波長,因此分別在:1. 固定週期大小和不同光柵長
度,2. 不同週期大小和相同週期數目,探討其光譜特性。
在700 nm~1700 nm 的範圍內的光譜,得知PM-1550-01 所製造出的光柵,不
會因為週期數目不同,而造成共振波長的位置發生改變。光譜圖會隨著週期的增
加,而往短波長移動,共振波長的數目,會隨著週期的增加而增加。
觀察不同週期下,光柵因外界環境變化,所造成的共振波長飄移,例如:環
境的溫度,折射率、氯離子濃度和光纖的彎曲度。我們發現,當環境的溫度、折
射率增加和光纖的彎曲度逐漸增大,都會造成共振波長往長波長飄移。由實驗得
知,溫度、彎曲、折射率靈敏係數分別為0.0046(nm/0C) - 0.0071 (nm/0C)、11.08 (nm.
cm) - 24.06 (nm.cm)、和9.07 (nm/RIU) - 15.19 (nm/RIU)。
以PM-1550-01 所製成的光柵和large-mode area (LMA)、endlessly single mode (ESM)
兩種光子晶體光纖相比,發現皆對於溫度都不靈敏。在彎曲感測方面, LMA 和
ESM 的彎曲靈敏係數分別為9.64(nm.m)和3.5(nm.m),約為 PM-1550-01 的數
十倍。在折射率感測方面,LMA 和ESM 的最大飄移量分別為30.8 nm 和3.5 nm,
而PM-1550-01 只有1.75 nm,與前面兩種PCF 差異甚大,結果說明PM-1550-01
光子晶體光纖結構上的設計,會明顯減少折射率和彎曲的靈敏度。
Abstract
This thesis is focused on the fabrication and characterization of
long-period fiber grating (LPG) written in photonic crystal fiber (PCF) from
Blaze Photonics PM-1550-01 by using CO2 laser pulses. The characteristics
of LPG written in PCF such as resonant peak intensities, locations of
resonance wavelengths and the number of resonant bands were studied by
controlling two of the design parameters: grating period and grating length.
We found that resonance wavelengths of attenuation bands between the
range of 700nm and 1700nm remained independent of the change of grating
length. When the grating period increased the transmission spectra of LPG
exhibited a blue shift in the resonance wavelength and an increase in the
number of resonant bands.
The sensing characteristics of fabricated LPG to a number of
measurands such as temperature, refractive index (RI), chloride ion, and
bending, were investigated and analyzed. A red shift in the transmission
spectra was observed with the increasing in temperature, RI, and curvature.
The measured sensitivities for temperature, RI and bending for this type of
LPG sensor were found to be in the range of 0.0046(nm/0C) - 0.0071(nm/0C),
9.07(nm/RIU) - 15.19076(nm/RIU), and 11.08(nm.cm) - 24.05(nm.cm),
respectively. The results may be compared with those previously obtained
using large-mode area (LMA) PCF and endlessly single mode (ESM) PCF
which possess a negligible temperature sensitivity, a good bending
sensitivity of 9.64 (nm.m) and 3.7 (nm.m), and a maximum wavelength shift
of 30.8 nm and 3.5 nm to the surrounding RI, respectively. The found
maximum wavelength shift to the surrounding RI was only 1.75 nm which is
largely different from results obtained with LMA PCF and ESM PCF,
indicating that the core and cladding microstructure design in PM-1550-01
had significantly reduced RI sensitivity.
目 錄
摘要 ……………………………………………………………… i
Abstract …………………………………………………………… ii
目錄 ……………………………………………………………… iii
圖目錄 …………………………………………………………… v
表目錄 …………………………………………………………… viii
第一章 緒論 ……………………………………………………… 1
1-1 前言 ……………………………………………………… 1
1-2 研究動機與目的 ………………………………………… 2
1-3 內容簡介 ………………………………………………… 2
第二章 光纖及光纖光柵基本原理 ……………………………… 4
2-1 傳統光纖的結構 ………………………………………… 4
2-2 傳統光纖的傳播原理 …………………………………… 5
2-3 傳統光纖長週期光柵理論 ……………………………… 7
2-4 光子晶體光纖的結構 …………………………………… 9
2-5 光子晶體光纖的製成方法 ……………………………… 10
2-6 光子晶體光纖的特性……………………………………… 12
2-7 光子晶體光纖的傳播原理 ……………………………… 14
2-8 以CO2雷射在光子晶體光纖製作長週期光柵的基本原理 … 17
第三章 光子晶體長週期光子晶體光纖光柵的製作與實驗方法 … 21
3-1 引言 ……………………………………………………… 21
3-2 長週期光子晶體光纖光柵的製造方法 ………………… 21
3-2-1 光罩法 ………………………………………………… 21
以CO2雷射製作長週期光子晶體光纖光柵及特性探討
3-2-2 機械壓力法 …………………………………………… 22
3-2-3 電弧放電法 …………………………………………… 24
3-2-4 液晶法 ……………………………………………… 24
3-2-5 二氧化碳雷射脈衝法 ………………………………… 25
3-3 實驗流程 ………………………………………………… 30
3-4 特性量測 ………………………………………………… 31
3-4-1 溫度特性的量測 ………………………………………… 31
3-4-2 彎曲特性的量測 ………………………………………… 33
3-4-3 折射率和氯離子特性的量測 ………………………… 36
第四章 實驗結果與討論 ………………………………………… 43
4-1 引言 ……………………………………………………… 43
4-2 長週期光子晶體光纖光柵的形成 ……………………… 43
4-2-1 實驗過程中所使用的光子晶體光纖 …………………… 43
4-2-2 共振波長的形成位置與參數之間的關係 …………… 45
4-3 退火的影響 ……………………………………………… 53
4-4 外界環境對長週期光子晶體光纖光柵的影響 ………… 56
4-4-1 溫度特性量測 …………………………………………… 56
4-4-2 彎曲度特性量測 ………………………………………… 61
4-4-3 折射率特性量測 ………………………………………… 66
4-4-3 氯離子濃度特性量測 ………………………………… 70
第五章 結論 ……………………………………………………… 75
參考文獻 ………………………………………………………… 77
參考文獻
[1].J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding” Opt. Lett., 21, 1547-1549,(1996).
[2].Philip Russell, “Photonic Crystal Fibers”, Science, 299, (2003),
http://www.sciencemag.org
[3].T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessly single-mode photonic crystal fiber” Opt. Lett., 22, 961-963, (1997).
[4].F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq,
Foundations of PHOTONIC CRYSTAL FIBERS, ( World Scientific), Chap. 4.
[5]. J. C. Knight,J. Arriaga,T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J.Russell, “Anomalous dispersion in photonic crystal fiber” , IEEE Photonics Technology Letters, 12, 807-809, (2000).
[6].陳泳竹,徐文成,崔虎.光纖中超連續光譜產生的領域分析.光子學報,32, 148-151,
(2003)
[7].Ortigosa-Blanch A,Knight J C,Wadsworth W J. et al.Highly birefringent photonic crystal fibers [J]-Opt. Lett., 25(18), 1325-1327, (2000)
[8].廖俊傑,孫迺翔,長週期與短週期光纖光柵綜合效應之研究,民國91 年。
[9].B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser,“Grating resonances in air silica microstructured optical fibers” ,Opt. Lett., 24, 1460-1462, (1999).
[10].Jong H. Lim, Kyung S. Lee, Jin C. Kim, Byeong H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett., 29,331-333, (2004).
[11] .G. Himber, A. Malki, S. Fevrier, P. Roy and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett., 39, 349-350, (2003).
[12] Yoonchan Jeong, Byungchoon Yang, Byoungho Lee,Hong Seok Seo, Sangsoo Choi,
and Kyunghwan Oh, “Electrically Controllable Long-Period Liquid Crystal Fiber
Gratings,” IEEE Phot. Tech. Lett, 12, 519-521, (2000)
[13].G. Kakarantzas, T. A. Birks, and P. St. J. Russell, ”Structural long-period gratings in photonic crystal fibers,” Opt. Lett., 27, (2002).
[14].You Mimura, Kazuyou Mizuno, Syu Namiki, Yoshio Tashiro, Yoshihiro Emori, el. al., “Gain-Flattening Filters with Autonomous Temperature Stabilization of EDFA Gain” ,Furukawa Review, 21-25, (2001).
[15].T.C. Hwang, Experiments in Physical Chemistry, (Gaulih Book Co., Taipei, 1994).
[16].R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, K. P. Dowker, Modelling of long period fibre grating response to refractive index higher than that of cladding, (IOp Publishing Ltd, UK,2001)
[17].Vengsarlar, A. M., Lemaire, P. J., Judkins, J. B., Bhatia, V., Sipe, J. E., and Erdogan, T., “Long-Period Fibre Gratings as Band-Rejection Filters,” OFC’95 Technical Digest, PD4-2, 65-67, (1995).
[18].Yinian Zhu, Ping Shum, Hui-Wen Bay, Min Yan, Xia Yu, Juanjuan Hu, Jianzhong Hao, Chao Lu, ”Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber”, Opt Lett., 30, (2005).
[19].Kazunori Suzuki, Hirokazu Kubota, Satoki Kawanish, ” Optical properties of a low-loss polarization-maintaining photonic crystal fiber”, Opt. Express, 9, 676-680, (2001)
[20]. T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, A. Tünnermann, “ Stress-induced birefringence in large-mode-area micro-structured optical fibers”, Opt. Express, 13, 3637 -3646, (2005)
[21]. Andrew Michie, John Canning, Katja Lyytikäinen, Mattias Åslund, and Justin Digweed,” Temperature independent highly birefringent photonic crystal fibre”, Opt Express, 12, 5160-5164, (2004).
[22]. Hiirokazu Kubota, Satoki Kawanishi, Members, IEEE, Shigeki Koyanagi,
Masatoshi Tanaka, and Shyunichiro Yamaguchi,” Absolutely Single Polarization
Photonic Crystal Fiber,” IEEE Phot. Tech. Lett., 16, 182-184, (2004)
[23].H. Dobb, K. alli and D.J. webb,”Temperature insensitive long period grating sensors in photonic crystal fiber”, Electron. Lett., 40, 657-658, (2004).
[25]. .H. Dobb, K. alli and D.J. webb,”Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fiber”, Opt. Commun., 260, 184-191, (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top