跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 00:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳振盛
研究生(外文):Jenn-Sheng Wu
論文名稱:以VarianceGamma過程與快速傅立葉轉換方法檢視買權的交易利潤
論文名稱(外文):Examining the Use of Variance Gamma Process and Fast Fourier Transform Methods to Forecast Profits from Trading Call Options
指導教授:陳安行陳安行引用關係
指導教授(外文):An-Sing Chen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:財務金融所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:31
中文關鍵詞:快速傅立葉轉換最小相對絕對誤差
外文關鍵詞:Variance Gamma ProcessFast Fourier TransformMinimum Relative Absolute ErrorMean Root Square Error (MRSE)Mean Absolute Error (MAE)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文使用Variance Gamma Process 與 快速傅立葉轉換計算FTSE 100指數買權價格。我們以交易日-定價誤差-利潤、指數報酬-定價誤差-利潤、履約價格-定價誤差-利潤、價內外--定價誤差-利潤、未平倉量-定價誤差-利潤這五種關係來預測交易的利潤。我們發現假如定價正誤差愈大則買入買權的利潤愈大,定價負誤差愈大或定價誤差愈小,則賣出指數買權的利潤愈大。
我們同時使用迴歸分析、根平均平方誤、平均絕對誤來檢測模型是否適當。結果為模型價格對觀察到的價格偏誤。
We use Variance Gamma Process and Fast Fourier Transform to calculate the FTSE 100 index call option price. We examine trading day-pricing errors-profits, FTSE 100 index returns-pricing errors-profits, strike prices-pricing errors-profits, moneyness-pricing errors-profits, and open interest -pricing errors-profits to forecast profits in above five relationships. We find that if pricing error is more larger in minus, we can get more profit by buying call option. Alternatively, if pricing error is samll or larger in positive, we can get profit by selling call option.
We also examine the model performance by regression analysis , root mean squared error (RMSE), and mean absolute error (MAE). We find the model is biased for the constant coefficient is not equal to 0. The RMSE and MAE are not approach to 0, the model price is biased from observed price.
Table of Contents
Acknowledgements iv
Abstract 1
Ⅰ. Introduction 1
Ⅱ. Model Specification 5
Ⅲ. Data Description 11
Ⅳ. Estimation Procedures 12
Ⅴ. Empirical Results 14
Ⅵ. Testing Model Performance 17
Ⅶ. Conclusions 19
References 20
List of Tables
Table Ⅰ. Mean, standard deviation, skewness, and kurtosis of S&P 500,
FTSE 100, DAX 100, and NIKKEI 225 indices’ log return from
January 2000 to June 2005 23
Table Ⅱ. Summary Statistics of FTSE 100 call Option Data Sample 23
Table Ⅲ. Parameters Estimates 24
Table Ⅳ. Trading Day, Pricing Errors, and Profits 25
Table Ⅴ. FTSE 100 Return, Pricing Errors, and Profits 26
Table Ⅵ. Strike Price, Pricing Errors, and Profits 27
Table Ⅶ. Moneyness, Pricing Errors, and Profits 28
Table Ⅷ. Open Interest, Pricing Errors, and Profits 29
Table Ⅸ. Dailey FTSE 100 Returns, Pricing Errors ,and Profits 30
Table Ⅹ. FTSE 100 Index Call Option Trading Strategies According to
Empirical Results 31
List of Figures
Figure Ⅰ. The Relationship among Trading Day, Pricing Errors and Profits 25
Figure Ⅱ. The Relationship among FTSE 100 Returns, Pricing Errors
and Profits 26
Figure Ⅲ. The Relationship among Strike Prices, Pricing Errors and Profits 27
Figure Ⅳ. The Relationship among Moneyness, Pricing Errors and Profits 28
Figure Ⅴ. The Relationship among Open Interest, Pricing Errors and Profits 29
Ait-Sahalia, Yacine, and Andrew Lo, 1998, Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices, Journal of Finance 53, 499-547
Andersen, T.G., L. Benzoni, and J. Lund, 2002, An Empirical Investigation of Continuous-Time Security Return Models, Journal of Finance 57, 1239-1284
Bakshi, Gurdip, Charlies Cao, and Zhiwu Chen, 1997, Empirical Performance of Alternative Option Pricing Models, Journal of Finance 52, 2003-2049
Bakshi, Gurdip, and Dilip B. Madan, 2000, Spanning and Derivative Security Valuation, Journal of Financial Economics 55, 205-238
Barndorff-Nielsen, Ole E., 1997, Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling, Scand J. Statist 24, 1-13
Barndorff-Nielsen, Ole E., 1998, Processes of Normal Inverse Gaussian Type, Finance and Stochastics 2, 41-68
Bates, David, 1996, Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutschemark Options, Review of Financial Studies 9, 69-108
Black, Fischer, and Myron Scholes, 1973, The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81, 637-659
Carr, Peter P., and Dilip B. Madan, 1999, Option Valuation Using the Fast Fourier Transform, Journal of Computational Finance 2, 61-73
Carr, Peter, and Liuren Wu, 2003, The Finite Moment Log Stable Process and Option Pricing, Journal of Finance 58, 753-777
Chacko, George and Luis M. Viceira, 2003, Spectral GMM Estimation of Continuous-Time Processes, Journal of Econometrics 116, 259-292
Chernov, Mikhail and Eric Ghysels, 2000, A Study Towards a Unified Approach to the Joint Estimation of Objective and Risk Neutral Measures for the Purpose of Options Valuation, Journal of Financial Economics 56, 407-458
Duffie, Darrell, Jun Pan, and Kenneth Singleton, 2000, Transform Analysis and Asset Pricing for Affine Jump Diffusions, Econometrica 68, 1343-1376
Eberlein, Ernst, 2001, Applications of Generalized Hyperbolic Levy Motion to Finance, in Levy Processes- Theory and Applications, Barndorff-Nielsen, Ole. E., Thomas Mikosch and Sidney I. Resnick eds., Birkhauser: Boston, 2001, 319-336
Eberlein, Ernst, Ulrich Keller, and Karsten Prause, 1998, New Insights into Smile, Mispricing, and Value at Risk: the Hyperbolic Model, Journal of Business 71, 371-408
Eberlein, Ernst and Sebastian Raible, 2001, Some Analytic Facts on the Generalized Hyperbolic Model. In Proceedings of the 3rd European Meeting of Mathematics, Progress in Mathematics 202, C. Casacuberta, et al. (Eds.), Birkhäuser Verlag, 367-378
Eraker, Bjorn, 2004, Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices, Journal of Finance 59, 1367-1404
Eraker, Bjorn, Michael Johannes, and Nicolas Polson, 2003, the Impact of Jumps in Equity
Index Volatility and Returns, Journal of Finance 58, 1269-1300
Figlewski, Stephen, 2002, Assessing the Incremental Value of Option Pricing Theory Relative to an Informationally Passive Benchmark, Journal of Derivatives 10, Fall, 80-96
Kou, Steven G., 2002, A Jump-Diffusion Model for Option Pricing, Management Science 48, 1086-1101
Madan, Dilip B., Peter P. Carr, and Eric C. Chang, 1998, The Variance Gamma Process and Option Pricing, European Finance Review 2, 79-105
Madan, Dilip B., and Frank Milne, 1991, Option Pricing with VG Martingale Components, Mathematical Finance 1, 39-56
Madan, Dilip B., and Eugene Seneta, 1990, The Variance Gamma Model for Share Market Returns, Journal of Business 63, 511-524
Merton, Robert, 1973, Theory of Rational Option Pricing, Bell Journal of Economics 4, 141-183
Merton, Robert, 1976, Option Pricing when the Underlying Stock Returns are Discontinuous, Journal of Financial Economics 4, 125-144
Pan, Jun, 2002, The Jump-Risk Premia Implicit in Options: Evidence from an Integrated Time-Series Study, Journal of Financial Economics 63, 3-50
Rydberg, T. H., 1997, The Normal Inverse Gaussian Levy Process: Simulation and Approximation, Communications Statistics and Stochastic Models 13, 887-910
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top