跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 02:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江仁博
研究生(外文):Ren-bo Jiang
論文名稱:應用風險值比較不同類型共同基金之績效
論文名稱(外文):The application of VaR in the Comparison of Performances of Various Mutual Funds
指導教授:莊益源莊益源引用關係
指導教授(外文):I-Yuan Chuang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:財務金融所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:49
中文關鍵詞:風險值核密度函數模型穩定分配模型
外文關鍵詞:VaRStable DistributionEWMA
相關次數:
  • 被引用被引用:2
  • 點閱點閱:484
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來共同基金規模逐漸擴大且類型逐漸變多,各種類型共同基金之風險不一,但傳統績效衡量指標在考慮風險時都是以報酬標準差做代表,但標準差並不能衡量投資人所真正關心的下方風險,因此本篇論文以利用四種風險值模型對九種類型共同基金計算風險值,並進行回溯測試,找出各類型共同基金之最適風險值預測模型,結果具對近期報酬資訊較著重的EWMA模型及HW模型表現較佳。致於在多、空頭時期之下各風險值的預估績效又有迥然不同的表現,在多頭時期下,各風險值模型皆高估了風險值,且各風險值模型失敗次數之獨立性有不錯表現;而在空頭時期下,各風險值模型皆低估了風險值,且失敗次數獨立性表現較差。在多頭時期下,各類型共同基金之最佳風險值模型皆為HW模型,;而在空頭時期下,四種風險值模型表則較平均,都有其適用之共同基金類型。
在利用各共同基金類型之最適風險值下去計算各種不同的績效評估模型下,發現績效最佳的共同基金類型為上市價值型,而最差的為跨國全球。利用最適風險值模型來進行各項績效評估,在多頭時期表現最要的仍為上市一般型,最差的則為跨國日本;在空頭時期,績效最佳的為跨國日本,表現最差的則不明顯。各類型共同基金在多頭時期及空頭時期之績效表現有些釭滬t相關,但不顯著,只有一個績效指標達顯著性。
在績效持績性上,各評估指標表現都不甚佳,甚至有反轉的現象發生,也就是說前期績效佳之共同基金類型,後期會績效會變差,而績效差的會變佳。
Recently the scale of mutual fund has expanded, of which the genre is multiple. Each genre has its’ own risk nature. However the traditional performance index uses standard deviation when considering risk. This article aims to use VaR (Value at Risk) in place of standard deviation to stand for the downside risk that the investors are truly concerned of.
In this article, we use four VaR model to measure the VaRs of nine kinds of mutual fund group. After implementing the back testing, we find the best VaR model of each to measure the performances. In the whole period, the VaR models focusing more on recent data seem to have better outcomes. If we divide the whole period into bull phase and bear phase, the results are different. In the bull phase, all VaR models overestimate VaR, and the HW results to be the best model of all mutual fund groups, and all VaR models pass the failure independence testing. In the bear phase, however, almost all VaR models underestimate VaR, and every VaR model has its’ own suitable mutual fund group, and the VaR models that doesn’t have the volatility renewing function couldn’t pass the failure independence testing.
We used five different performance indices to measure the performance of each mutual fund group and find the listed value-oriented mutual fund group to be the unanimous best-performing group and the global mutual fund to be the unanimous worst-performing group. In the bull phase the best-performing group is still listed value-oriented mutual fund group, and the worst-performing group is Japan-oriented mutual fund. In the bear phase, however, the best-performing group is Japan-oriented mutual fund, and the worst-performing group is unclear. The performances in bull and bear phase are sort of negative-correlated, but only one performance index is significant.
The before and after performances are not significantly positively correlated, which means the performance is reversal.
目錄
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究架構與流程 3
第二章 文獻探討 4
第一節 風險值發展與應用 4
第二節 共同基金績效衡量方法 8
第三章 研究方法 11
第一節 資料來源與研究期間 11
第二節 風險值計算方法 12
第三節 風險值驗證 19
第四節 共同基金績效評估模型及其預測性 21
第四章 實證分析 24
第一節 樣本資料分析 24
第二節 風險值之估計與驗證分析 24
第三節 共同基金績效評估指標之運用與分析 27
第五章 結論與建議 29
參考文獻 43
參考文獻
國內部分:
1.李進生、謝文良、林允永、蔣炤坪、陳達新、盧陽正,2001,「風險管理-風險值(VaR)理論與應用」,清蔚科技股份有限公司出版。
2.周大慶、沈大白、張大成、敬永康、柯瓊鳳,2002,「風險管理新標竿-風險值理論與應用」,智勝文化事業有限公司出版。
3.邱臙珍、莊益源、王祝三,2005,機率密度函數風險值模型在臺灣店頭市場之實證研究,管理評論,第二十四卷,第二期,77-110頁。
4.邱臙珍、莊益源,2005,亞洲地區風險值模型之績效分析,風險管理學報,第七卷,第一期,5-28頁。
5.高志明,1999,「核心密度函數法在風險值估計的應用與評估」,銘傳大學金融研究所碩士論文。
6.張有若,2002,「全球共同基金群組風險與績效評估-以風險值修正夏普指標之應用」,中原大學企業管理研究所碩士論文。
7.張雅惠,2000,「應用風險值評估共同基金之績效」,政治大學金融研究所碩士論文。
8.楊佳寧,2001,風險值及RAROC於基金績效評估之運用,貨幣觀測與信用評等,第28期,124-131頁。
9.廖淑娟,2001,「VaR夏普法則的應用限制」,台灣大學國際企業學研究所碩士論文。
10.盧銘森,2001,「應用風險值及左偏動差模式評估共同基金績效」,銘傳大學金融研究所在職專班碩士論文。
11.魏志安,2002,「核密度分配估計風險值之探討」,中正大學統計科學研究所碩士論文。

國外部分:
1.Alexander, C. O. and C. T. Leigh, 1997, "On the Covariance Matrics Used in Value at Risk Models", Journal of Derivatives 4, pp.50-62.
2.Alexander, G. J. and A. M. Baptista, 2003, "Portfolio Performance Evaluation Using Value at Risk", The Journal of Portfolio Management 29, pp.93–102.
3.Barone-Adesi, G., Giannopoulos, K., and L. Vosper, 1999, "VaR without Correlations for Portfolios of Derivative Securities", Journal of Futures Markets 19, pp.583-602.
4.Beder, T. S., 1995, "VAR:Seductive but Dangerous", Financial Analysts Journal 51, Sep-Oct, pp.12-24.
5.Bollerslev, T., 1986, "Generalized Autoregressive Conditional Heteroskedasticity", Journal of Econometics 31, pp.307-327.
6.Boudoukh, J., Richardson, M. and R. Whitelaw, 1998, "The Best of Both Worlds", Risk 11, May, pp.64-67.
7.Brooks, C. and G. Persand, 2002, "Volatility Forecasting for Risk Management", Journal of Forecasting 22, pp.1-22.
8.Butler, J. S., and B. Schachter, 1998, "Estimating Value-at-Risk with a Precision Measure by Combining Kernel Estimation with Historical Simulation", Review of Derivatives Research 1, pp.371-390.
9.Christoffersen, P. F., 1998, "Evaluating Interval Forecasts", International Economic Review 39, pp.841-862.
10.Dowd, K.,1998, "Beyond Value at risk:The New Science of RiskManagement", John Wiley & Sons.
11.Dowd, K., 1999, "A Value at Risk Approach to Risk-Return Analysis", The Journal of Portfolio Management 25, Spring, Number 4, pp.60-67.
12.Duffie, D. and J. Pan, 1997, "An Overview of Value at Risk", Journal of Derivatives 4, Spring, pp.7-49.
13.Dybvig, P. and S. Ross, 1985, "The Analytics of Performance Measurement Using a Security Market Line", Journal of Finance 47, pp.1952-1976.
14.Engle, R. F., 1982, "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation", Econometica 50, pp.987-1008.
15.Fama, E. F., 1965, "The Bahavior of Stock Market Prices", Journal of Business 38, pp.34-105.
16.Gibson, F., 2001, "Incorporating Event Risk into Value-at-Risk", Working Paper.
17.Gordon J. Alexander and Alexandre M. Baptista, 2003, "Portfolio Performance Evaluation Using Value at Risk: The Reward", Journal of Portfolio Management 29, pp.93-102
18.Hendricks, D., 1996, "Evaluation of Value-at-Risk Models Using Historical Data", Economic Policy Review, Federal Reserve Bank of New York, April, pp.36-69.
19.Hull, J. and A. White, 1998, "Incorporating Volatility Updating the Historical Simulation Method for Value at Risk", Journal of Risk 1, Fall, pp.5-19
20.Hull, J. and A. White, 1998, "Value at Risk When Daily Changes in Market Variables are not Normally Distributed", Journal of Derivatives 3, Spring, pp.9-19.
21.J. P. Morgan, 1996, RiskMetrics Technical Document 4th ed, New York.
22.Johnson, R. R., Buetow, G. W. and G. R. Jensen, 1999, "International mutual fund returns and Federal Reserve policy", Financial Services Review 8, pp.199-210.
23.Jorion, P. 2001, "Value at Risk: The New Benchmark for Controlling Market Risk", Second Edition, McGraw-Hill.
24.Kim, M.K. and J.K. Zumwalt, 1979, "An Analysis of Risk in Bull and bear Markets", Journal of Financial and Quantitative Analysis 14, pp.1015-1025.
25.Kupiec, P., 1995, "Techniques for Verifying the Accuracy of Risk Measurement Models", Journal of Derivatives 3, pp.73-84.
26.Lehman, B., and D. Modest, 1987, "Mutual Fund Performance Evaluation: A Comparison of Benchmark and Benchmark Comparisons" Journal of Finance 42, pp. 233-265.
27.Longin, F. M., 1996, "From Value at Risk to Stress Testing: the Extreme Value Approach", Journal of Banking & Financ 24, pp.1097-1130.
28.Lopez, J. 1999, "Methods for Evaluating Value-at -Risk Estimates", Economic Review 2, pp.3-17.
29.McNeil, A., and R. Frey, 2000, "Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach", Journal of Empirical Finance 7, Autumn, pp.271-300.
30.Murray, S., 1999, "Benchmark-Relative Value at Risk", Derivatives Quarterly 25, pp.23-38.
31.Sharpe, W.F., 1994, "The Sharpe Ratio", Journal of Portfolio Management 21, pp.49-58.
32.Sheather, S. J. and J. S. Marton, 1990, "Kernel Quantile Estimatiors", Journal of the American Statistical Association 85, pp.410-416.
33.Silvapulle, P. and C. Granger, 2001, "Large Returns, Conditional Correlation and Portfolio Diversification: A Value-at-Risk Approach", Quantitative Finance 1, pp. 542-551.
34.Silverman, B. W., 1986, Density Estimation for Statistics and Data Analysis, London: Chapman and Hall.
35.Zangari, P., 1996, "An Improved Methodology for Measuring VaR", RiskMetrics-Monitor, Second Quarter, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top