(3.230.143.40) 您好!臺灣時間:2021/04/21 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周芳俊
研究生(外文):Fang-Chun Chou
論文名稱:具限制出口多孔性散熱器熱傳特性研究
論文名稱(外文):EXPERIMENTAL INVESTIGATION OF HEAT-TRANSFER CHARACTERISTICS OF ALUMINUM-FOAM HEAT SINKS WITH RESTRICTED FLOW OUTLET
指導教授:謝文馨謝文馨引用關係
指導教授(外文):Wen-Hsin Hsieh
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:94
語文別:中文
論文頁數:76
中文關鍵詞:多孔性材料發泡鋁散熱器熱傳衝擊流
外文關鍵詞:impinging jet flowporous mediaheat sinkfoam
相關次數:
  • 被引用被引用:6
  • 點閱點閱:227
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
衝擊流形式下,由於多孔性材料流阻的特性,冷卻流體由多孔性材料之上方進入,流體由上往下以衝擊的方式流經多孔性材料,再由多孔性材料四週以俓向方向流出散熱器,使得冷卻空氣在未到達熱源表面上時就由多孔性材料之周圍離開散熱器,散熱器的熱傳效能因此受到限制。而針對散熱器高度的變化下,在散熱效能上散熱面積與流阻兩個互相牽制的因素考量上。本研究將以一限制流體出口之風罩,控制散熱器流體出口面積,以迫使較多冷卻空氣在多孔性散熱器內到達受熱面,以增加其散熱器的散熱效果。在此研究中,將針對加入風罩裝置後,流體出口面積對於散熱器之熱傳效能做探討。同時也將討論到孔隙度(ε)、孔數率(PPI)、空氣流速以及散熱器長度()L在散熱表現上的效應。結果顯示,將隨著孔數率、孔隙度與空氣流速的增加而增加。另一方面,也會隨著流體出口面積的縮小而增加,並且在散熱表現上,出口面積的效應遠大於孔隙度、孔數率與散熱器長度。此是由於當出口面積減小時,流經受熱面的空氣流量大幅增加所致。此可由出口流場特性量測實驗結果證實。
第一章 緒論 1
1.1 前言………………………………………….….. 1
1.2 文獻回顧………………………………………... 2
1.2.1 多孔性散熱器熱傳特性方面………….... 2
1.2.2 多孔性散熱器流場特性方面…................ 3
1.3 研究動機與研究目的…………………………... 4
1.4 研究貢獻……………………………………….. 5
第二章 研究方法 10 2.1 前言…………………………………………….. 10
2.2 實驗量測………………………………………... 10
2.2.1 實驗設備………………………………. 10
2.2.2 實驗量具之校正………………………. 11
2.2.3 實驗量測狀況…………………………. 13
2.2.4 熱傳特性參數決定方法………………. 13
2.2.5 熱損失測定……………….……………. 14
2.3 多孔性散熱器流場特性實驗量測.…………….. 15
2.3.1 實驗設備………………………………. 15
2.3.2 實驗量具之校正……………………….. 15
2.3.3 實驗量測狀況………………………….. 16
2.4 誤差分析………………………...……………… 18
第三章 結果與討論 39
3.1 前言……………………………………………... 39
3.2 多孔性散熱器熱傳特性實驗結果…...……........ 39
3.3 多孔性散熱器流場特性實驗結果…………....... 42
第四章 總結與未來研究方向 55
4.1 結論…………………………………………….. 55
4.2 未來的研究方向………………………………... 56
參考文獻…………………………………………………….. 57
附錄一………………………………………………………. 59
附錄二………………………………………………………. 61
附錄三……………………………………………………….. 67
附錄四……………………………………………………….. 73
作者簡歷…………………………………………………….. 76
參考文獻
[1] W. H. Shih, W. C. Chiu and W. H. Hsieh, 2004, “Length Effect on Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks,” submitted for publication to J. of Heat and Transfer.
[2]謝育仁,”含多晶片模組之圓形陶瓷基材散熱技術研究”, 博士論文,國立清華大學動力機械工程學系, 1998
[3]M.R. Izadpanah ,H. Muller-Steinhagen, and M. Jamialahmadi, 1998 , “Experimental and Theoretical Studies of Convective Heat Transfer in a Cylindrical porous medium,” Int. J. of Heat and Fluid Flow, 19, pp. 629-635. [4] Chao, Chung-Hsing and Li, Ji-Ming, “Foam-Metal Heat Sinks for Thermal Enhanced BGA Package Applications,” The Eleventh International Symposium on Transport Phenomena ISTP-II, Hsinchu, Taiwan, 4, pp. 23-29.
[5] Chou, Shyan-Fu and Yang, Chen-Han, 1993, “Heat Transfer Characteristics of Aluminum Foam Metal,” Proceedings of Sixth International Symposium on Transport Phenomena in Thermal Engineering, Seoul, Korea, pp. 709-714.
[6] W. H. Hsieh, J. Y. Wu, W. H. Shih, and W. C. Chiu, 2004, “Experimental Investigation of Heat-transfer Characteristics of Aluminum-foam Heat Sinks,” Int. J. of Heat Mass Transfer, 47, pp. 5149-5157.
[7] Seo Young Kim, Jin Wook Paek, and Byung Ha Kang , 2003“Thermal Performance of Aluminum-Foam Heat Sinks by Forced Air Cooling” IEEE Transactions on Components and Packaging Technologies , Vol. 26, NO. 1, pp. 262-267.
[8] “ Effect of ceramic particles on cell size and wall thickness of aluminum foam”Wang Deqing , 2003 , Shi Ziyuan Materials Science and Engineering A361 , pp. 45–49
[9] Hunt, M. L., and Tien, C. L., 1988, “Effects of Thermal Dispersion on Forced Convection in Fibrous Media,” Int. J. Heat Mass Transfer, 31(2), pp. 301-309.
[10] Forchheimer, P. H., 1901, “Wasserbeweguing durch Boden,” Z. Ver. Deutsch. Ing., 45, pp. 17S2-17S8.
[11] Lee, K. B., and Howell, J. R., 1991, “Media Theoretical and Experimental Heat and Mass Transfer in Highly Porous Media,” Int. J. Heat Mass Transfer, 34(8), pp. 2123-2132. 57
[12] Richardson, J. T., Peng, Y., and Remue, D., 2000, “Properties of ceramic foam catalyst supports: pressure drop,” Applied Catalysis A: General, 204, pp. 19–32.
[13] Prieur Du Plessis, A. Montillet, J. Comiti and Jack Legrand, 1994, “Pressure Drop Prediction for Flow through High Porosity Metallic Foams,” 49 (21), pp. 3545-3553.
[14] J. F. Liu, W. T. Wu, W. C. Chiu and W. H. Hsieh, “Measurement and Correlation of Friction Characteristic of Flow through Foam Matrixes,” publication accepted by Experimental Thermal and Fluid Science, Nov 10, 2004. [15] Calmidi, V. V., 1998, “Transport Phenomena in High Porosity Fibrous Metal Foams,” PhD. Thesis, Department of Mechanical Engineering, University of Colorado.
[16] V. V. Calmidi and R. L. Mahajan, 1999, “The Effective Conductivity of High Porosity Fibrous Metal Foams,” Journal of Heat Transfer, 121, pp. 466-471.
[17] A. Bhattacharya and R.L. Mahajan, 2002, “Finned metal Foam Heat Sinks for electronics Cooling in Forced Convection,” Journal of Electronic Packaging, 124, pp. 155-163.
[18] Calmidi, V. V. and Mahajan, R. L, 2000, “Forced Convection in High Porosity Metal Foams,” Journal of Heat Transfer, 122, pp.557-565.
[19] John E. Freund and Gray A. Simon, 1970, Statistics-A First Course – 6th edition, Prentice Hall, p. 455.
[20]D. Angirasa , 2002,“Experimental investigation of forced convection heat transfer augmentation with metallic fibrous materials”, Int. J. of Heat and Mass Transfer 45, pp. 919-922
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔