跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳青揚
研究生(外文):Ching-yang Chen
論文名稱:以微觀力學計算模型為基礎探討構裝體中異質性接合膠層結構的機濕熱相關問題
論文名稱(外文):A Micro-Mechanics Based Computational Model for Hygro-Thermo-Mechanical Analysis of Heterogeneous Adhesive Bonding Layer in Packaging Structures
指導教授:劉德騏
學位類別:博士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:114
中文關鍵詞:有限元素法無限元素法複合濕元素法異質性接合膠層顆粒強化的複合材料多數粒子的模擬
外文關鍵詞:modeling of multiple particlesparticulate-reinforced compositesheterogeneous adhesive bonding layerhybrid moisture element method (HMEM)finite element method (FEM)infinite element method (IEM)
相關次數:
  • 被引用被引用:10
  • 點閱點閱:394
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
若直接處理顆粒強化與纖維強化的複合材料,使用傳統有限元素法有其限制在。無限元素法已經使用去預測異質性材料機械行為,但到目前為止其方法仍然有不足之處。本研究將針對混入多數粒子且粒子隨機分佈的異質性複合材料與其所組成的結構,提出以微觀力學為基礎的數值模型,分析其因外力環境所引起的機濕熱相關問題。首先,藉由濕熱效應的引入與三維異質性的發展,無限元素法的架構將更完善且應用性更廣。其次,創新的無限元素法應用與複合濕元素法的提出也順利解決介面應力與暫態濕氣擴散在求解上的困難。最後,使用套裝軟體ABAQUS結合有限元素法所建立的整合模型也提升了所提出的數值方法的可用性與能力。所發展的數值計算模型,可大量的節省前處理的建模時間、運算的自由度以及電腦的記憶容量。本研究也進一步探討一系列有關二維構裝體中異質性接合膠層結構與三維顆粒強化複合材料因材料異質性對其所組成結構的影響。由分析結果可以印證所提出的計算模型為一個簡易且有效率的數值分析工具。經由本研究的進行,建立異質性材料的分析方法,以提供相關研究人員作為參考使用。
The direct application of the conventional finite element method (FEM) to modeling of the particulate-reinforced and fiber-reinforced composites has limitations. The infinite element method (IEM) has been used in predicting the mechanical behaviors of heterogeneous materials, but so far is still not in maturity. In this thesis, a micro-mechanics based computational model for hygro-thermo-mechanical analysis of heterogeneous materials reinforced with arbitrarily distributed multiple particles is proposed. First, the infinite element method not only is enhanced by taking the temperature and moisture effects into account but also is extended to deal with three-dimensional elastostatic problems in which the constituent material properties are heterogeneous. Next, an innovative IEM application for studying material interface problems and a novel numerical technique, hybrid moisture element method (HMEM), for modeling and analyzing the moisture diffusion in heterogeneous epoxy resin filled with multiple randomly distributed particles are also both well presented. Finally, the IE-FE and HME-FE coupling scheme are addressed and their implementation are accomplished by employing the commercial software ABAQUS to greatly enhance the convenience and capability of our proposed methods. With the proposed approach, the execution time in the modeling stage, the number of DOFs, and PC memory storage were significantly reduced. A series of problems relating to the two-dimensional packaging structure containing heterogeneous adhesive bonding layer and three-dimensional particulate-reinforced composites are investigated. The proposed approach provides another simple and efficient numerical analysis tool for related problems of heterogeneous material, as demonstrated in the analysis result presented in this dissertation.
中文摘要 I
英文摘要 II
圖目錄 VI
表目錄 IX
一、 緒論 1
1-1 接合膠層結構 1
1-1-1 覆晶底膠 1
1-1-2 導電膠膜 2
1-1-3 紫外光固型環氧樹脂 3
1-2 接合膠層結構對構裝可靠度的影響 3
1-2-1 新型CMOS影像感測構裝體 4
1-2-2 電子構裝與光電封裝之構裝體 5
1-3 研究目的 7
二、 發展微觀力學計算模型 13
2-1 描述材料異質性的相關力學模型 13
2-1-1 等效材料特性 13
2-1-2 濕氣擴散特性 18
2-2 無限元素法 20
2-2-1 等參元素的相似性 20
2-2-2 二維彈濕熱無限元素法 22
2-2-3 二維彈濕熱無限元素法之延伸應用 32
2-2-4 三維異質性無限元素法 33
2-2-5 有限元素法與無限元素法之整合 41
2-2-6 無限元素法的驗證 41
2-3 複合濕元素法 43
2-3-1 濕氣擴散統御方程式 43
2-3-2 二維複合濕元素法 44
2-3-3 有限元素法與複合濕元素法之整合 47
2-3-4 二維複合濕元素法的驗證 47
三、 材料異質性對其所組成結構的影響 62
3-1 等效材料特性的定義 62
3-2 二維具有異質性材料層的多層結構 63
3-2-1 異質性材料的等效材料特性 64
3-2-2 多層結構的等效模型 65
3-2-3 多層結構的實際模型 66
3-3 三維多表面覆層顆粒強化的複合材料 68
3-3-1 覆層粒子介面彈性係數的影響 68
3-3-2 覆層粒子介面厚度的影響 69
3-3-3 覆層粒子分佈的影響 70
四、 材料異質性對濕氣擴散的影響 82
4-1 濕氣擴散模擬 82
4-2 異質性封裝接合膠層 83
4-2-1 暫態濕傳分析 84
4-2-2 粒子填充物的影響 84
五、 結論與未來方向 90
參考文獻 96
附錄 102
[1]J. Qu, C.P. Wong, “Effective elastic modulus of underfill material for flip-chip applications,” IEEE T. Compon. Pack. T., 2002, vol. 25(1), pp. 509-16.
[2]http://www.ritdisplay.com.tw
[3]C.Y. Chen, Y.C. Chao, D.S. Liu, Z.W. Zhuang, “Design of a Novel Chip on Glass Package Solution for CMOS Image Sensor Device,” Microelectron Reliab., 2005.
[4]L.L. Mercado, J. White, V. Sarihan, T.T. Lee, “Failure mechanism study of anisotropic conductive film (ACF) packages,” IEEE T. Compon. Pack. T., 2003, vol. 26(3), pp. 509-16.
[5]L. Frisk, E. Ristolainen, “Flip chip attachment on flexible LCP substrate using an ACF,” Microelectron Reliab., 2005, vol. 45(3-4), pp. 583-8.
[6]N.H. Yeung, Y.C. Chan, S.C. Tan, K.K. Lee, K.K. Chan, “Effect of void in the anisotropic conductive assembly,” Proceedings - Electronic Components and Technology Conference, 2003, pp. 1378-82.
[7]M.B. Vincent, L. Meyers, C.P. Wong, “Enhancement of underfill adhesion to die and substrate by use of silane additives,” Proceedings - 1998 4th International Symposium on Advanced Packaging Materials, 1998, pp. 49-52.
[8]J.E. Park, I. Jasiuk, A. Zubelewicz, “Interfacial stress analysis and fracture of a bi-Material strip with a heterogeneous underfill,” J. Electron. Packag., 2003, vol. 125, pp. 400-13.
[9]錸寶科技股份有限公司, “有機電激發光顯示面版及其用之封膠,” 中華民國專利200507692, 2005.
[10]J.C. Halpin, S.W. Tsai, “Effect of Enviromental Factors on Composite Materials,” AFML-TR., 1967, pp. 67-423.
[11]J. Aboudi, “Mechanics of composite materials,” Elsevier, Amsterdam, 1991.
[12]T. Mura, “Micromechanics of defects in solids,” Martinus Nijhoff Publishers, Dordrecht, 1987.
[13]T. Mori, K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 1977, vol. 21, pp. 571-4.
[14]Y. Benveniste, “A new approach to the application of Mori-Tanaka’s theory in composite materials,” Mech. Mater., 1987, vol. 6, pp. 147-57.
[15]R. Hill, “Self-consistent mechanics of composite materials,” J. Mech. Phys. Solids, 1965, vol. 13, pp. 213-22.
[16]B. Budiansky, “On the elastic moduli of some heterogeneous materials,” J. Mech. Phys. Solids, 1965, vol. 13, pp. 223-7.
[17]R. McLaughlin, ”A study of the differential scheme for composite materials,” Internat. J. Eng. Sci., 1977, vol. 15, pp. 237-44.
[18]M. Lagache, A. Agbossou, J. Pastor, D. Muller, “Role of interphase on the elastic behavior of composite materials: theoretical and experimental analysis,” J. Compos. Mater., 1994, vol. 28, pp. 1140-57.
[19]G. Wacker, A.K. Bledzki, A. Chate, “Effect of interphase on the transverse Young’s modulus of glass/epoxy composites,” Compos. Part A, 1998, 29A, pp. 619-26.
[20]B.D. Agrwal, L.J. Broutman, “Three-dimensional finite element analysis of spherical particle composites,” Fibre Sci. Technol., 1974, vol. 7, pp. 63-77.
[21]Y. Wu, Z. Dong, “Three-dimensional finite element analysis of composites with coated spherical inclusion,” Mater. Sci. Eng. A, 1995, vol. 203, pp. 314-23.
[22]E. Ghassemieh, V. Nassehi, “Stiffness analysis of polymeric composites using the finite element method,” Adv. Polym. Tech., 2001, vol. 20(1), pp. 42-57.
[23]H.J. Böhm, W. Han, A. Eckschlager, “Multi-inclusion unit cell studies of reinforcement stresses and particle failure in discontinuously reinforced ductile matix composite,” CMES - Comp. Model. Eng., 2004, vol. 5(1), pp. 5-20.
[24]H.J. Böhm, W. Han, “Comparisons between three-dimensional and two-dimensional multi-particle unit cell models for particle reinforced metal matrix composites,” Modelling Simul. Mater. Sci. Eng., 2001, vol. 9, pp. 47-65.
[25]J. Zhang, N. Katsube, “A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions,” Finite Elem. Anal. Des., 1995, vol. 19, pp. 45-55.
[26]J. Zhang, N. Katsube, “A hybrid finite element method for heterogeneous materials with randomly dispersed rigid inclusions,” Int. J. Numer. Methods Eng., 1995, vol. 38, pp. 1635-53.
[27]J.F. Luo, Y.J. Liu, E.J. Berger, “Interfacial stress analysis for multi-coating systems using an advanced boundary element method,” Comput. Mech., 2000, vol. 24, pp. 448-55.
[28]Y.J. Liu, N. Xu, J.F. Luo, “Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method,” ASME J. Appl. Mech., 2000, vol. 67, pp. 41-9.
[29]X.L. Chen, Y.J. Liu, “Multiple-cell modeling of fiber-reinforced composites with the presence of interphases using the boundary element method,” Comput. Mater. Sci., 2001, vol. 21, pp. 86-94.
[30]X.L. Chen, Y.J. Liu, “Thermal stress analysis of multi-layer thin films and coatings by an advanced boundary element method,” CMES - Comp. Model. Eng., 2001, vol. 2(3), pp. 337-49.
[31]D.S. Liu, D.Y. Chiou, “A coupled IEM/FEM approach for solving the elastic problems with multiple cracks,” Int. J. Solids Struct., 2003, vol. 40, pp. 1973-93.
[32]D.S. Liu, D.Y. Chiou, “3D IEM formulation with an IEM/FEM coupling scheme for solving elastostatic problems,” Adv. Eng. Softw., 2003, vol. 34, pp. 309-20.
[33]D.S. Liu, D.Y. Chiou, “Geometric singularity problem modeling and formulation with an unbounded domain using the infinite element method,” Comput. Struct., 2005, vol. 83, pp. 2086-99.
[34]D.S. Liu, D.Y. Chiou, C.H. Lin,“A hybrid 3D thermo-elastic infinite element modeling for area-arrey package solder joints,” Finite Elem. Anal. Des., 2004, vol. 40, pp. 1703-27.
[35]P. Silvester, I.A. Cermark, “Analysis of coaxial line discontinuities by boundary relaxation,” IEEE Trans. Microwave Theory Tech., 1969, vol. 17(8), pp. 489-95.
[36]R.W. Thatcher, “Singularities in the solution of Laplace’s equation in two dimensions,” J. Inst. Math. Appl., 1975, vol.16, pp. 303-19.
[37]R.W. Thatcher, “On the finite element method for unbounded region,” SIAM J. Numer. Anal., 1978, vol. 15, pp. 466-77.
[38]Z.H. Guo, “Similar isoparametric elements,” Sci. Bull., 1979, vol. 24(13), pp. 577-82.
[39]L.A. Ying, “Infinite element methods,” Peking University Press and Vieweg Publishing, 1995.
[40]D.S. Liu, D.Y. Chiou, “Modeling of inclusion with interphases in heterogeneous material using the infinite element method,” Comp. Mater. Sci., 2004, vol. 31, pp. 405-20.
[41]C.H. Shen, G.S. Springer, “Moisture absorption and desorption of composite materials,” J. Compos. Mater., 1976, vol. 10(1), pp. 2-20.
[42]C.E. Browning, G.E. Husman, J.M. Whitney, “Moisture effects in epoxy resin matrix composites,” ASTM STP 617, 1977, pp. 481-96.
[43]M. Woo, M.R. Piggott, “Water absorption of resins and composites: IV. Water transport in fiber reinforced plastics,” J. Compos. Tech. Res., 1988, vol. 10(1), pp. 20-4.
[44]C.D. Shirrell, J. Halpin, “Moisture absorption and desorption in epoxy composite laminates,” ASTM STP 617, 1977, pp. 514-28.
[45]P. Vaddadi, T. Nakamura, R.P. Singh, “Inverse analysis for transient moisture diffusion through fiber reinforced composites,” Acta Mater., 2003, vol. 51(1), pp.177-93.
[46]P.K. Aditya, P.K. Sinha, “Moisture diffusion in variously shaped fibre reinforced composites,” Comput. Struct., 1996, vol. 59(1), pp. 157-66.
[47]P. Vaddadi, T. Nakamura, R.P. Singh, “Transient hygrothermal stresses in fiber reinforced composites: A heterogeneous characterization approach,” Compos. Part A: Appl. Sci. Manuf., 2003, vol. 34(8), pp. 719-30.
[48]邱德義, “發展二維與三維之熱彈性無限元/有限元耦合法及工程應用,” 國立中正大學機械工程學系, 博士論文, 2004.
[49]D.L. Logan, “A first course in the finite element method,” 2nd ed., PWS-KENT, Boston, 1992.
[50]Y.W. Kwon, H. Bang, “The Finite Element Method using MATLAB,” CRC Press, New York, 2000.
[51]Hibbitt, Karlsson & Sorensen, Inc., “ABAQUS user’s manual,” Version 6.2-1, 2001.
[52]J.E. Park, I. Jasiuk, A. Zubelewicz, “Stresses and fracture at the chip/underfill interface in flip-chip assemblies,” J. Electron. Packaging, 2003, vol. 125, pp. 44-52.
[53]J. Crank, G.S. Park, “the mathematics of diffusion,” Oxford University Press., 1956.
[54]E.H Wong, Y.C. Teo, T.B. Lim, “Moisture diffusion and vapor pressure modeling of IC packaging,” 48th ECTC, 1998, pp. 1372-8.
[55]E.H. Wong, R. Rajoo, S.W. Koh, T.B. Lim, “The mechanics and impact of hygroscopic swelling of polymeric materials in electronic packaging,” J. Electron. Packaging, 2002, vol. 124(2), pp. 122-6.
[56]E.H. Wong, S.W. Koh, K.H. Lee, R. Rajoo, “Advanced moisture diffusion modeling & characterization for electronic packaging,” Proceedings - Electronic Components and Technology Conference, 2002, pp. 1297-1303.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top