(3.234.221.67) 您好!臺灣時間:2021/04/11 16:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉建南
研究生(外文):Chien-nan Ya
論文名稱:以分子動力學研究奈米碳管金屬基複合材料之機械性質
論文名稱(外文):Molecular Dynamics Study on the Mechanical Properties of Carbon Nanotube Metal Matrix Composites
指導教授:張怡玲
指導教授(外文):I-Ling Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:125
中文關鍵詞:金屬基奈米碳管奈米碳管金屬基分子動力學
外文關鍵詞:Molecular DynamicsMetal Matrix CompositesCarbon Nanotube
相關次數:
  • 被引用被引用:2
  • 點閱點閱:299
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:1
本文以分子動力學(Molecular Dynamics)方法來研究奈米碳管金屬基複合材料的機械性質,主要著重在幾個因素的探討:
1. 奈米碳管在複合材料裡重量比例
2. 奈米碳管螺旋效應(不同結構)
3. 金屬基材與奈米碳管之間黏著效應
在模擬中,針對這些因素來創造出不同的奈米複材模型,承受軸向拉伸並加以分析奈米複合材料的彈性性質。本研究發現,1.奈米碳管重量比越高時,其楊氏係數也會跟著提高;2.在相近的重量比下,埋置不同螺旋性的碳管,得知扶手椅形單壁奈米碳管在複材裡楊氏係數的提升比其他兩種形式碳管來的好;3.當結合能量ε越大時,金屬基材與奈米碳管之間黏著效應越好,複材楊氏係數也會跟著提升,而平衡距離σ對彈性係數影響不大。經由本論文對奈米複合材料的研究,希望將來有助於工業界對奈米複材的瞭解與製成,並對奈米複合材料性能上的優化設計有所幫助。
The mechanical properties of carbon nanotube metal matrix composites were studied using molecular dynamics simulations. The atomic models were constructed in order to investigate several effects, i.e. carbon nanotube weight ratio effect, chiral effect and the adhesion between nanotube and metal matrix. It was found that the Young’s modulus of composites increase as carbon nanotube weight ratios increase. The Young’s modulus of armchair carbon nanotube composites were found to be higher than those with zigzag and chiral carbon nanotubes for similar weight ratios. It was concluded that the Young’s modulus of composites would improve if the adhesion between nanotube and matrix becomes stronger.
致謝……………………………………………………………………Ⅰ
摘要……………………………………………………………………Ⅱ
Abstract………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅳ
圖目錄…………………………………………………………………Ⅶ
表目錄…………………………………………………………………XI
符號說明………………………………………………………………XII

第一章 緒論………………………………………………………1
1-1 前言………………………………………………………1
1-2 研究動機與目的…………………………………………2
1-3 文獻回顧…………………………………………………3
1-4 本文架構…………………………………………………11
1-5 研究流程圖………………………………………………12
第二章 分子動力學理論…………………………………………18
2-1 分子動力學基本理論與假設……………………………18
2-2 分子間作用力與勢能函數………………………………19
2-2-1分子間作用力………………………………19
2-2-2勢能函數……………………………………21
2-3 原子應力…………………………………………………25
2-4 週期性邊界條件與最小映像法…………………………26
2-4-1 週期性邊界條件……………………………26
2-4-2 最小映像法則………………………………27
2-5 初始條件設定……………………………………………28
2-6 運動方程式………………………………………………30
2-7 截斷半徑法與Verlet表列法……………………………33
第三章 分子動力學數值模擬方法………………………………43
3-1 勢能函數之選擇…………………………………………43
3-1-1 奈米碳管與金屬基材………………………44
3-1-2 金屬基材……………………………………44
3-1-3 奈米碳管……………………………………45
3-1-4 Tersoff函數變數之關係……………………48
3-1-5 Tersoff微分形式……………………………49
3-2 原子模型…………………………………………………53
3-3 無因次化…………………………………………………55
3-4 系統之平衡………………………………………………56
3-5 程式模擬流程圖…………………………………………57
第四章 奈米碳管結果分析………………………………………67
4-1 程式驗證…………………………………………………67
4-1-1 鑽石結構……………………………………67
4-1-2 石墨結構……………………………………70
4-2 奈米碳管…………………………………………………71
4-2-1 尺寸及螺旋性效應…………………………71
4-2-2 碳管塑性行為………………………………74
第五章 奈米碳管金屬基複合材料結果分析……………………91
5-1 非結晶形(Amorphous)金屬……………………………91
5-2 奈米碳管金屬基複合材料模擬過程……………………92
5-3 奈米碳管重量比效應……………………………………92
5-4 奈米碳管螺旋效應………………………………………94
5-5 金屬基材與奈米碳管之間黏著效應……………………94
第六章 結論與未來展望…………………………………………104
6-1 結論………………………………………………………104
6-2 未來展望…………………………………………………105
參考文獻……………………………………………………………108
[1] S. Iijima, Nature, 352, 56-58, 1991.
[2] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerense & Carbon Nanotubes. San Diego : Academic Press, 1996.
[3] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Physical World, 11, 33, 1998.
[4] A. Thess, P. Nikolaev, H. Dai, C. Xu, A. G.. Rinzler, D. T. Colbert, G.. E. Scuseria, R. E. Smalley, Science, 273, 483-487, 1996.
[5] J. M. Yacaman, M. M. Yoshida, L. Rendon, J. G.. Santiesteban, Applied Physics Letters, 62, 202, 1993.
[6] R. H. Baughman, A. A. Zakhidov, W. A. Heer, Science, 297, 787-792, 2002.
[7] R. Saito, M. S. Dresselhaus, G. Dresselhaus, Physical Properties of Carbon Nanotubes. Imperial College Press, 1998.
[8] J. Tersoff, Physical Review Letters, 61, 2879-2882, 1988.
[9] D. H. Robertson, D. W. Brenner, J. W. Mintmire, Physical Review B, 45, 12592, 1992.
[10] B. I. Yakobson, C. J. Brabec, J. Bernholc, Physical Review Letters, 76, 2511, 1996.
[11] C. F. Cornwell, L. T. Wille, Solid State Communications, 101, 555, 1997.
[12] J. R. Lu, Physical Review Letters, 79, 1297, 1997.
[13] X. Zhou, J. J. Zhou, Y. Z. C. Ou, Physical Review B, 62, 13692, 2000.
[14] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature, 381, 678, 1996.
[15] E. W. Wong, P. E. Sheehan, C. M. Lieber, Science, 277, 1971, 1997.
[16] J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, Physical Review Letters, 82, 944, 1999.
[17] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science, 287, 637-640, 2000.
[18] B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R. O. Ritchie, Materials Science and Engineering A, 334, 173-178, 2002.
[19] C. A. Cooper, R. J. Young, M. Halsall, Composites Part A: Applied Science and Manufacturing, 32, 401-411, 2001.
[20] J. B. Bai, Letters to the Editor/Carbon, 41, 1325-1328, 2003.
[21] R. George, K. T. Kashyap, R. Rahul, S. Yamdagni, Scripta Materialia, 53, 1159-1163, 2005.
[22] C. S. Goh, J. Wei, L. C. Lee, M. Gupta, Nanotechnology, 17, 7-12, 2006.
[23] C. L. Xu, B. Q. Wei, R. Z. Ma, Carbon, 37, 855-858, 1999.
[24] S. R. Dong, J. P. Tu, X. B. Zhang, Material Science and Engineering A, 313, 83-87, 2001.
[25] S. J. V. Frankland, V. M. Harik, G. M. Odegard, D. W. Brenner, T. S. Gates, Composite Science and Technology, 63, 1655-1661, 2003.
[26] Y. J. Liu, X. L. Chen, Mechanics of Materials, 35, 69-81, 2003.
[27] A. Garg, S. B. Sinnott, Chemical Physics Letters, 295, 273, 1998.
[28] T. Halicioglu, Thin Solid Films, 312, 11-14, 1998.
[29] N. Yao, V. Lordi, Journal of Applied Physics, 84, 1939, 1998.
[30] E. Hernandez, C. Goze, P. Bernier, A. Rubio, Physical Review Letters, 80, 4502, 1998.
[31] D. Srivastava, M. Menon, K. Cho, Physical Review Letters, 83, 2973, 1999.
[32] G. V. Lier, C. V. Alsenoy, V. V. Doren, P. Geerling, Chemical Physics Letters, 326, 181, 2000.
[33] T. Ozaki, Y. Iwasa, T. Mitani, Physical Review Letters, 84, 8, 2000.
[34] G. Zhou, W. Duan, B. Gu, Chemical Physics Letters, 333, 344, 2001.
[35] T. Xiao, K. Liao, Physical Review B, 66, 153407, 2002.
[36] T. Belytschko, S. P. Xiao, G. C. Schatz, R. S. Ruoff, Physical Review B, 65, 235430, 2002.
[37] C. Wei, K. Cho,D. Srivastava, Physical Review B, 67, 115407, 2003.
[38] A. Sears, R. C. Batra, Physical Review B, 69, 235406, 2004.
[39] Y. R. Jeng, P. C. Tsai, T. H. Fang, Physical Review B, 71, 85411, 2005.
[40] Y. Wang, X. X. Wang, X. G. Ni, H. A. Wu, Computational Materials Science, 32, 141, 2005.
[41] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Physical Review B, 58, 14013, 1998.
[42] O. Lourie, H. Wagner, Journal of Materials Science, 13, 1471, 1998.
[43] J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, L. Forro, Physical Review Letters, 82, 944, 1999.
[44] T. W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C. S. Jayanthi, M. Tang, S. Y. Wu, Nature, 405, 769, 2000.
[45] A. Volodin, M. Ahlskog, E. Seynaeve, C. Van Haesendonck, Physical Review Letters, 84, 15, 2000.
[46] J. H. Irving, J. G.. Kirkwood, Journal of Chemical Physics, 18, 817-829, 1950.
[47] D. C. Rapaport, Cambridge University Press, London, 1997.
[48] R. J. Arsenault, J. R. Beeler, Asm international, USA, 1988.
[49] J. M. Haile, John Wiley & Sons, New York, 1997.
[50] E. Hernande, C. Goze, P. Bernier, Physical Review Letters, 80, 4502, 1998.
[51] G. C. Maitland, M. Rigby, Oxford Vniversity Press, London, 1987.
[52] D. C. Rapaport, Cambridge University Press, 1997.
[53] 朱訓鵬,國立成奶j學機械工程研究所博士論文, 2002.
[54] J. E. Lennard-Jones, Proceedings of the Royal Society, 106A, 441, 1924.
[55] L. A. Girifalco, V. G.. Weizer, physical Review, 114, 3, 1959.
[56] F. Milstein, J. Annl, Physics, 44, 9, 1973.
[57] F. Cleri, V. Rosato, Physical Review B, 48, 22-33, 1993.
[58] V. Rosato, M. Guillope, B. Legrand, Philosophical Magazine A, 59, 321-336, 1989.
[59] S. M. Foiles, M. I. Baskes, M. S. Daw, Physical Review B, 33, 7983-7991, 1986.
[60] M. I. Baskes, J. S. Nelson, A. F. Wright, Physical Review B, 40, 6085-6100, 1989.
[61] N. Miyazaki, Y. Shiozaki, The Japan Society of Mechanical Engineers, A39, 606-12, 1996.
[62] J. M. Haile, John Wiley & Sons, New York, 1992.
[63] J. Tersoff, Physical Review B, 37, 6991-7000, 1988.
[64] J. Tersoff, Physical Review B, 39, 5566-5568, 1989.
[65] S. Izumi, “分子動力學講習會資料”, 東京大學機械工程系, 2003.
[66] S. Izumi, S. Sakai, The Japan Society of Mechanical Engineers, A47, 2004.
[67] M. Griebel, J. Hamaekers, Institute for Numerical Simulation, 0501, 2005.
[68] D. Srolovitz, K. Maeda, V. Vitek, T. Egami, Philosophical Magazine A, 44, 847-866, 1981.
[69] M. Zugang, G. Ajay, B. S. Susan, Nanotechnology, 10, 273–277, 1999
[70] P. H. Zhang, P. E. Lammert, V. H. Crespi, Physical Review Letters, 81, 5346, 1998.
[71] A. J. Stone, D. J. Wales, Chemical Physics Letters, 128, 501, 1986.
[72] http://casl.ucsd.edu/data_analysis/materials_database/metals.htm
[73] T. H. Fang, C. I. Weng, Nanotechnology, 11, 148, 2000.
[74] K. Maekawa, A. Itoh, Wear, 188, 115, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔