|
[1] P. Villain, P. Goudeau, P. O. Renault, and K. F. Badawi, “Size effect on intragranular elastic constants in thin tungsten films,” Applied Physics Letters, 81, 4365 (2002).
[2] P. Goudeau, P. O. Renault, P. Villain, C. Coupeau, V. Pelosin, B. Boubeker, K. F. Badawi, D. Thiaudiere, and M. Gailhanou, ” Characterization of thin film elastic properties using X-ray diffraction and mechanical methods: application to polycrystalline stainless steel,” Thin Solid Films, 398, 496 (2001).
[3] P. O. Renault, E. Le Bourhis, P. Villain, P. Goudeau, K. F. Badawi, and D. Faurie, “Measurement of the elastic constants of textured anisotropic thin films from x-ray diffraction data,” Applied Physics Letters, 83, 473 (2003).
[4] H. Huang and F. Spaepen, “ Tensile testing of free-standing Cu, Ag and Al thin flims and Ag/Cu multilayers ” Acta Materilia, 48, 3261 (2000).
[5] D. C. Hurley, V. K. Tewary, and A. J. Richards, “Thin-film elastic-property measurements with laser-ultrasonic SAW spectrometry ” Thin Solid Films, 2, 398, (2001).
[6] M. C. Salvadori, I. G. Brown, A. R. Vaz, L. L. Melo, and M. Cattani, “ Measurement of the elastic modulus of nanostructured gold and platinum thin films ” Physical Review B 67, 153404 (2003).
[7] K. Van Workum and J. J. de Pablo, “ Local elastic constants in thin films of an fcc crystal ” Physical Review E 67, 031601 (2003).
[8] R. E. Miller and V. B. Shenoy, “ Size-dependent elastic properties of nanosized structural elements ” Nanotechnology, 11, 139 (2000).
[9] L.G.Zhou and Hanchen Huang , “ Are surfaces elastically softer or stiffer ? ” Applied Physics Letters, 84, 1940(2004).
[10] K. Sieradzki, and R. C. Cammarata, “ Elastic properties of thin fcc films ” Physical Review B 41, 17 (1990).
[11] M. Treacy, T. Ebbesen, and J. Gibson, “ Exceptionally high Young's modulus observed for individual nanotubes”, Nature, 381, 678 (1996).
[12] E. Wong, P. Sheehan, and C. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes ” , Science, 277, 1971 (1997).
[13] P. Poncharal, Z. L. Wang, D. Ugarte, and W. de Heer , “Electron Microscopy of Nanotubes ”, Science, 283, 1513 (1999).
[14] S. Govindjee, and J. L. Sackman,” On the use of continuum mechanics to estimate the properties of nanotubes”, Solid State Communications, 110, 227 (1999).
[15] G. Overney, W. Zhong, and D. Tomanek,” Structural rigidity and low frequency vibrational modes of long carbon tubules,” Zeitschrift fur Physik D, 27, 93 (1993).
[16] B. I. Yakobson, C. J. Barbec, and J. Bernholc, ”Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response ”, Physical Review Letter, 76, 2511 (1996).
[17] C. Q. Ru, “Effective bending stiffness of carbon nanotubes,” Physical Review B, 62, 9973 (2000).
[18] E. B. Tadmor, M. Oritz, and R. Philips, “Quasicontinuum analysis of defects in solids ”, Philosophical Magazine A, 73, 1529 (1996).
[19] P. Zhang, Y. Huang, P. H. Geubelle, P. A. Klein, and K. C. Hwang ,” The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials ”, International Journal of Solid Structure, 39 , 3893 (2002).
[20] S. J. A. Koh, H. P. Lee, C. Lu, and Q. H. Cheng, ”Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain : Temperature and strain-rate effects,” Physical Review B 72, 085414 (2005).
[21] H. Zhang and C. T. Sun,” Size-dependent elastic moduli of platelike nanomaterials ”, Journal of Applied Physics, 93, 1212 (2002).
[22] A. K. Ghatak and L. S. Kothari, “An Introduction to Lattice Dynamics”, Addison-Wesley, Singapore, 76-111 (1972).
[23] S. M. Foiles, M. I. Baskes, and M. S. Daw, ” Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys ”, Physical Review B, 33, 7983 (1986).
[24] F. Milstein, “Mechanical Stability of Crystal Lattices with Two-Body Interactions”, Physical Review B, 2, 512 (1970).
[25] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Physical Review, 114, 687 (1959)
[26] D. Wolf, “Surface-stress-induced structure and elastic behavior of thin films”, Applied Physics Letters, 58, 2081(1991).
[26] Q. Jiang, L. H. Liang, and D. S. Zhao, “Lattice Contraction and Surface Stress of fcc Nanocrystals”, The journal of physical chemistry, 105,, 6275 (2001).
[27] L. H. Liang, J. C. Li, and Q. Jiang, ” Size-dependent elastic modulus of Cu and Au thin films”, Solid State Communication. 121, 453 (2002).
[28] F. Q. Yang, ”Size-dependent effective modulus of elastic composite materials: Spherical nanocavities at dilute concentrations”, Applied Physics, 95, 3516 (2004).
[29] F. H. Streitz, R. C. Cammarata, and K. Sieradzki, “Surface-stress effects on elastic properties. II. Metallic multilayers”, Physical Review B, 49, 10699 (1994).
[30] P. Villain, P. Beauchamp, K. F. Badwi, P. Goudeau, and P. O. Renault, ”Atomistic calculation of size effects on elastic coefficients in nanometre-sized tungsten layers and wires”, Scripta Materialia, 50, 1247 (2004).
|