跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/15 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃仁靜
研究生(外文):Jen-Chin Huang
論文名稱:奈米薄膜之彈性常數與尺寸關係之研究
論文名稱(外文):The Study of Size - Dependent Elastic Moduli of Nanofilms
指導教授:張怡玲
指導教授(外文):I-Ling Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:80
中文關鍵詞:奈米薄膜彈性常數半連續模型面心立方晶格
外文關鍵詞:Nanomaterials: Synthesis and Characterization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本文中建立半連續模型(semi-continuum model)來處理具有面心立方晶體結構的金屬奈米薄膜,考慮厚度在奈米等級,而在膜的平面方向尺寸則遠大於原子間距;在厚度方向考慮材料的不連續性,而在平面方向則以傳統連續體理論處理,將原子間的交互作用,分別以兩個彈簧(常數分別為 、 )來代表最近跟次近原子間的作用。由原子間的作用力,可以推得整個薄膜的應變能,再進而推得其彈性常數(例如楊性模量、蒲松氏常數等)與膜厚度之間的關係,這一個半連續模型將用來探討膜厚度對彈性常數的影響。
A three-dimensional lattice model is constructed to theoretically study the size effects on the elastic properties of nanofilms with the face-center-cubic crystal structure. Unlike the classical continuum theory, this lattice model directly takes the discrete nature in the thickness direction into account. Only the interactions between the nearest and second nearest atoms are considered in this model and represented as harmonic springs. The constitutive relation of the nanofilm is then derived by using the energy approach and the analytical expressions of the elastic moduli of nanofilms, including in-plane, out-plane Young’s modulus and Poisson’s ratio, are obtained. Further, these expressions along different crystal orientations of nanofilms are also formulated. It is shown that the nanofilm in in-plane surface may be stiffer or softer than its bulk counterpart; however the nanofilm in out-plane surface is always softer.
中文摘要 І
英文摘要 II
目錄 III
圖目錄 Ⅵ
符號說明 Ⅸ
第一章 緒論...........................................1
1-1 前言............................................1
1-2 文獻回顧........................................2
1-3 研究動機與目的......................................6
1-4 本文架構............................................7
第二章 半連續模型之基本理論............................9
2-1 奈米薄膜........................................9
2-2 半連續模型......................................9
2-2-1 面心立方晶格模型................................9
2-2-2 原子間的作用力.................................10
2-2-3 半連續模型.....................................10
2-3 應變能密度.....................................17
2-3-1 應變能.........................................17
2-3-2 剛性矩陣.......................................19
2-3-3 簡單拉伸.......................................24
第三章 分析與討論.....................................33
3-1 參數分析.......................................33
3-2 彈簧常數.......................................35
3-2-1 利用塊材值反推....................................35
3-2-2 由勢能函數推得....................................35
3-3 奈米薄膜之彈性係數............................37
3-4 奈米線.........................................38
第四章 晶格方向效應...................................50
4-1 的奈米薄膜....................................50
4-1-1 參數分析..........................................53
4-1-2 奈米薄膜之彈性係數...............................53
4-2 奈米薄膜......................................54
4-2-1 參數分析..........................................53
4-2-2 奈米薄膜之彈性係數...............................53
4-3 能量分析.......................................57
第五章 結論與未來展望.................................74
5-1 結論...........................................74
5-2 未來展望.......................................75


參考文獻................................................77
[1] P. Villain, P. Goudeau, P. O. Renault, and K. F. Badawi, “Size effect on intragranular elastic constants in thin tungsten films,” Applied Physics Letters, 81, 4365 (2002).

[2] P. Goudeau, P. O. Renault, P. Villain, C. Coupeau, V. Pelosin, B. Boubeker, K. F. Badawi, D. Thiaudiere, and M. Gailhanou, ” Characterization of thin film elastic properties using X-ray diffraction and mechanical methods: application to polycrystalline stainless steel,” Thin Solid Films, 398, 496 (2001).

[3] P. O. Renault, E. Le Bourhis, P. Villain, P. Goudeau, K. F. Badawi, and D. Faurie, “Measurement of the elastic constants of textured anisotropic thin films from x-ray diffraction data,” Applied Physics Letters, 83, 473 (2003).

[4] H. Huang and F. Spaepen, “ Tensile testing of free-standing Cu, Ag and Al thin flims and Ag/Cu multilayers ” Acta Materilia, 48, 3261 (2000).

[5] D. C. Hurley, V. K. Tewary, and A. J. Richards, “Thin-film elastic-property measurements with laser-ultrasonic SAW spectrometry ” Thin Solid Films, 2, 398, (2001).

[6] M. C. Salvadori, I. G. Brown, A. R. Vaz, L. L. Melo, and M. Cattani, “ Measurement of the elastic modulus of nanostructured gold and platinum thin films ” Physical Review B 67, 153404 (2003).

[7] K. Van Workum and J. J. de Pablo, “ Local elastic constants in thin films of an fcc crystal ” Physical Review E 67, 031601 (2003).

[8] R. E. Miller and V. B. Shenoy, “ Size-dependent elastic properties of
nanosized structural elements ” Nanotechnology, 11, 139 (2000).

[9] L.G.Zhou and Hanchen Huang , “ Are surfaces elastically softer or stiffer ? ” Applied Physics Letters, 84, 1940(2004).

[10] K. Sieradzki, and R. C. Cammarata, “ Elastic properties of thin fcc films ” Physical Review B 41, 17 (1990).

[11] M. Treacy, T. Ebbesen, and J. Gibson, “ Exceptionally high Young's modulus observed for individual nanotubes”, Nature, 381, 678 (1996).

[12] E. Wong, P. Sheehan, and C. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes ” , Science, 277, 1971 (1997).

[13] P. Poncharal, Z. L. Wang, D. Ugarte, and W. de Heer , “Electron Microscopy of Nanotubes ”, Science, 283, 1513 (1999).

[14] S. Govindjee, and J. L. Sackman,” On the use of continuum mechanics to estimate the properties of nanotubes”, Solid State Communications, 110, 227 (1999).

[15] G. Overney, W. Zhong, and D. Tomanek,” Structural rigidity and low frequency vibrational modes of long carbon tubules,” Zeitschrift fur Physik D, 27, 93 (1993).

[16] B. I. Yakobson, C. J. Barbec, and J. Bernholc, ”Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response ”, Physical Review Letter, 76, 2511 (1996).

[17] C. Q. Ru, “Effective bending stiffness of carbon nanotubes,” Physical Review B, 62, 9973 (2000).

[18] E. B. Tadmor, M. Oritz, and R. Philips, “Quasicontinuum analysis of defects in solids ”, Philosophical Magazine A, 73, 1529 (1996).

[19] P. Zhang, Y. Huang, P. H. Geubelle, P. A. Klein, and K. C. Hwang ,” The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials ”, International Journal of Solid Structure, 39 , 3893 (2002).

[20] S. J. A. Koh, H. P. Lee, C. Lu, and Q. H. Cheng, ”Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain : Temperature and strain-rate effects,” Physical Review B 72, 085414 (2005).

[21] H. Zhang and C. T. Sun,” Size-dependent elastic moduli of platelike nanomaterials ”, Journal of Applied Physics, 93, 1212 (2002).

[22] A. K. Ghatak and L. S. Kothari, “An Introduction to Lattice Dynamics”, Addison-Wesley, Singapore, 76-111 (1972).

[23] S. M. Foiles, M. I. Baskes, and M. S. Daw, ” Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys ”, Physical Review B, 33, 7983 (1986).

[24] F. Milstein, “Mechanical Stability of Crystal Lattices with Two-Body Interactions”, Physical Review B, 2, 512 (1970).

[25] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Physical Review, 114, 687 (1959)

[26] D. Wolf, “Surface-stress-induced structure and elastic behavior of thin films”, Applied Physics Letters, 58, 2081(1991).

[26] Q. Jiang, L. H. Liang, and D. S. Zhao, “Lattice Contraction and Surface Stress of fcc Nanocrystals”, The journal of physical chemistry, 105,, 6275 (2001).

[27] L. H. Liang, J. C. Li, and Q. Jiang, ” Size-dependent elastic modulus of Cu and Au thin films”, Solid State Communication. 121, 453 (2002).

[28] F. Q. Yang, ”Size-dependent effective modulus of elastic composite materials: Spherical nanocavities at dilute concentrations”, Applied Physics, 95, 3516 (2004).

[29] F. H. Streitz, R. C. Cammarata, and K. Sieradzki, “Surface-stress effects on elastic properties. II. Metallic multilayers”, Physical Review B, 49, 10699 (1994).

[30] P. Villain, P. Beauchamp, K. F. Badwi, P. Goudeau, and P. O. Renault, ”Atomistic calculation of size effects on elastic coefficients in nanometre-sized tungsten layers and wires”, Scripta Materialia, 50, 1247 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top