跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝秋帆
研究生(外文):Chiu-Fan Hsieh
論文名稱:使用次摆線於轉子幾何設計之研究
論文名稱(外文):Study on Geometry Design of Rotors Using Trochoidal Curve
指導教授:黃以文黃以文引用關係
指導教授(外文):Yii-Wen Hwang
學位類別:博士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:195
中文關鍵詞:真空泵摆線減速器摆齒泵
外文關鍵詞:vacuum pumpgerotorcycloidal speed reducer
相關次數:
  • 被引用被引用:5
  • 點閱點閱:731
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:0
摆线器已在工業上廣泛的應用,有鑒於此,本文主要針對次摆线於轉子幾何設計上的研究作討論。本文所研究的轉子分別有魯氏泵、摆齒泵、壓縮機以及摆线減速器等等。
在魯氏泵設計方面,本文提出一新的設計方法---變摆线曲線。並提出了一個可以達到高容積效率的設計流程以及達到高密閉性的設計流程。
在摆线減速器方面,提出了具有齒數差的兩種設計數學模式。這兩種設計中,一種為針輪外摆线嚙合,另一為針輪內摆线嚙合。依參數設計的結果,比較兩種設計的接觸力和曲率分析,利用曲率分析來推導出齒形不過切的條件,以及判斷齒形是否達到連續的情況。對於此兩種設計模式,亦可導出一個較簡單的非過切無因次數學模式,並衍生出可行設計區的方法,使得在此區域內的設計值皆不會有過切以及針輪間的干涉現象。
再者,此兩種設計的數學模式也可用於摆齒泵。此模式可推導出具有較好的泵效率以及密閉性之設計,其可行設計範圍可由過切分析所得到。此外,本文也應用了包絡或偏移量的觀念於摆齒泵設計上。在內外轉子之共軛曲線被產生後,便可算出兩共軛曲線之包絡線。被包絡的齒形不但可運用於摆齒泵而且也適用於壓縮機。文末,對於未包絡以及包絡後之轉子也同樣地作了容積效率以及密閉性分析。
The trochoidal derives is widely used in the industry. This thesis mainly discusses the trochoidal curve on the geometry design of Roots pump, gerotor, compressor and cycloidal speed reducer.
In the Roots pump design, we propose a new method that is an extended cycloid curve with a variable trochoid ratio. A design flow is presented on how to achieve high volumetric efficiency, and a design procedure on how to make a high sealing rotor is also discussed.
In the cycloidal speed reducer design, two types of design on the mathematical model with tooth differences are proposed. One is a pin wheel epitrochoid meshing and the other is a pin wheel hypotrochoid meshing. Using the parameters of the design result, then compare the analysis on their contact forces and assesses curvature which determines whether the cycloidal wheel has a non-undercutting or continuous condition on the tooth profile. For these two designs, simple dimensionless equations of non-undercutting would be derived and the feasible design regions without undercutting or interference between the adjacent pins would then be developed.
In addition, the two proposed mathematical models could be applied to the gerotor pump as well. The design with greater pump efficiency and sealing, and its feasible design region without undercutting would be determined by the undercutting analysis.
Besides, the ideas of envelope and offset are also added to the gerotor design. After the two conjugate curves are generated, their envelope curves would be proposed. The enveloped profiles could be exercised not only on the gerotor pump but also the compressor. Finally, the comparison with pump performance, such as volumetric efficiency and the sealing, would be presented for these designs, which include envelope and non-envelope rotor profiles.
Acknowledgement i
Abstract in Chinese ii
Abstract in English iii
Table of Contents iv
List of Tables ix
List of Figures x
Nomenclature xv

Chapter 1 Introduction
1.1 Types of Trochoids 1
1.2 Introduction of Roots pump 4
1.2.1 Roots Blower and Its Works 4
1.2.2 A Blower Used 5
1.2.3 Roots Vacuum Pump 5
1.2.4 Technical Considerations of Roots Pump 6
1.3 Introduction of a Cycloidal Speed Reducer 6
1.4 Introduction of a Gerotor Pump 8
1.5 References Review and Study Motivations 9
1.5.1 References Review for Roots Rotor 10
1.5.2 References Review for Trochoidal Drives 11
1.5.3 Thesis Outline 15

Chapter 2 Study on Tooth profile of a Roots Rotor with a Variable Trochoid Ratio
2.1 Introduction 18
2.2 Mathematical Model of Rotor Geometry 19
2.2.1 Mathematical Model of the Addendum Curve 19
2.2.2 Equation of Meshing 20
2.2.3 Mathematical Model of the Dedendum Curve 21
2.3 Curvature Analysis of the Rotor Profile 21
2.4 Undercutting analysis of the rotor profile 23
2.5 Design Method for the Extended Cycloid Curve with Variable Trochoid Ratio 24
2.5.1 Third-order Polynomial 25
2.5.2 Fifth-order Polynomial 25
2.5.3 Seventh-order Polynomial 25
2.5.4 Comparison of Volumetric Efficiency for the Variable Trochoid Ratio Designed Using Different-order Polynomials 26
2.5.5 Examples of Tooth Undercutting and Carryover 28
2.6 Design Procedure of the optimization of volumetric efficiency 28
2.6.1 Discussion on the Curve of the Trochoid Ratio Function 31
2.7 Design Procedure of High Sealing Property 32
2.8 Conclusion Remarks 36

Chapter 3 Geometry Design and Analysis for Trochoidal-Type Speed Reducers: with Conjugate Envelopes
3.1 Introduction 58
3.2 Geometric Design 59
3.2.1 Mathematical Model of Pin Wheel Epitrochoid Meshing 59
3.2.2 Mathematical Model of Pin Wheel Hypotrochoid Meshing 62
3.3 The Contact Forces of the Pin Wheel 64
3.4 Curvature and the Conditions of the Undercutting 67
3.4.1 Inflection Point 67
3.4.2 Extreme Value of the Radius of Curvature 68
3.5 Conclusion Remarks 72

Chapter 4 Geometric Design Using Hypotrochoid and Non-undercutting Conditions for an Internal Gear
4.1 Introduction 86
4.2 Geometric Design 87
4.3 Equation of Undercutting and Design Constraints 89
4.4 Numerical Examples and Discussion 94
4.4.1 Gerotor Design 94
4.4.2 Design of Cycloidal Speed Reducer 95
4.5 Conclusion Remarks 96

Chapter 5 Geometry Design and Feasible Design Region for Cycloidal Drives
5.1 Introduction 109
5.2 Geometric Design 110
5.3 Equation of Undercutting and Design Constraints 113
5.4 Numerical Examples and Discussion 117
5.4.1 Gerotor Design 117
5.4.2 Design of Cycloidal Speed Reducer 118
5.5 Conclusion Remarks 119

Chapter 6 Study on Geometry Design of a Gerotor pump with High Volumetric Efficiency
6.1 Introduction 133
6.2 Geometry Design of Cycloidal Pump 134
6.2.1 Mathematical Model 134
6.2.2 Mathematical Model of an Offset Curve 137
6.2.3 Equation of Undercutting 138
6.2.4 Equation of Curvature 141
6.3 Geometric Design and Discuss 142
6.3.1 Gerotor Designed with Epitrochoidal Curve 142
6.3.2 Gerotor Designed with Hypotrochoidal Curve 145
6.3.3 Gerotor Designed with Epicycloid and Hypocycloid 145
6.3.4 Comparison of the Volumetric Efficiency 146
6.4 Designed Gerotor with High Volumetric Efficiency 147
6.5 Conclusion Remarks 149

Chapter 7 Synthetic Conclusion and Further Prospects
7.1 Synthetic Conclusion 167
7.2 Future Prospects 169
References 171
SCI/EI Paper List 176
1.Adams, G. P. and Beard, J. E., “Comparison of Helical and Skewed Axis Gerotor Pumps,” Mech. Mach. Theory, Vol. 32, No. 6, pp. 729–742, 1997.
2.Beard, J. E., Yannitell, D. W. and Pennock, G. R., “The Effect of the Generating Pin Size and Placement on the Curvature and Displacement of Epitrochoidal Gerotors,” Mech. Mach. Theory, Vol. 27, No. 4, pp. 373–389, 1992.
3.Botsiber D. W. and Kingston, L., “Design and Performance of the Cycloid Speed Reducer,” Machine Design, pp. 65–69, 1956.
4.Chiu, H. C., “The Mathematical Model and Computer Aided Manufacturing of Roots Blower Gerotor Profile,” Journal of Technology, Vol. 9, No. 1, pp. 13–19, 1994.
5.Chen, C. K. and Yang, S. C., “Geometric Modeling for Cylindrical and Helical Gear Pumps with Circular Arc Teeth,” Journal of Mechanical Engineering Science Part C, Vol. 214, No. 4, pp. 599–607, 2000.
6.Demenego, A., Vecchiato, D., Litvin, F. L., Nervegna, N., and Manco, S., ‘‘Design and Simulation of Meshing of a Cycloidal Pump,’’ Mech. Mach. Theory, Vol. 37, No. 3, pp. 311–332, 2002.
7.Editorial committee of the gear handbook, Gear handbook (3), China Machine Press., 1994.
8.Fang, H. S., “Two-Shaft Type Rotary Machine Having a Tip Circle Diameter to Shaft Diameter within a Certain Range,” U. S. Patent 4,943,214, 1990.
9.Fang, H. S., “Rotor Profile for A Roots Vacuum Pump,” U. S. Patent 5,152,684, 1992.
10.Fong, Z. H. and Wang, P. Y., “Study on the Tooth Profile of the Multi-Lobed Roots Pump,” In proceedings of 10th World Congress on Theory of Machines and Mechanisms, pp. 2392–2405, 1999.
11.Fong, Z. H. and Tsay, C. W., “Study on the Undercutting of Internal Cycloidal Gear with Small Tooth Difference,” Journal of the Chinese Society of Mechanical Engineers, Vol. 21, No. 4, pp. 359–367, 2000.
12.Harris, J. W. and Stocker, H. Handbook of Mathematics and Computational Science, New York, Springer-Verlag, 1998.
13.Hilbert D. and Cohn-Vossen S., Geometry and Imagination, Chelsea Publishing Co, N.Y. 1990.
14.Hall, L. "Trochoids, Roses, and Thorns--Beyond the Spirograph." College Math. J. Vol. 23, pp. 20–35, 1992.
15.Hsieh, G. E. and Meng, J. L., “Computer Aided Design of Roots Blower Profile,” Proceedings of the 1989 Technology and Occupation Education Conference at the National Taipei University of Technology, Taiwan, ROC, pp. 2123–2128, 1989.
16.Ishibashi, A., Sonoda, K. and Isami, S., “Theoretical Efficiencies of Planetary Gear Drives for Speed Increase and Reduction with Experimental Verification,” Power Transmission and Gearing Conference, ASME, DE-Vol. 88, pp. 397–404, 1996.
17.Kreyszig, E. Differential Geometry, New York, Dover, 1991.
18.Kang, Y. H. and Hsieh, C. F., “Study on CAD/CAM of Roots Rotor Profile,” Proceedings of the 2000 Manufacture Technology Conference at the National Tsing-Hua University, Taiwan, ROC, pp. 357–363, 2000.
19.Litvin, F. L., Theory of gearing, NASA RP–1212, Washington, DC, 1989.
20.Litvin, F. L. and Kin, V., “Computerized Simulation of Meshing and Bearing Contact for Single-Enveloping Worm-Gear Drives,” ASME Transaction, Journal of Mechanisms, Vol. 114, pp. 313–316, 1992.
21.Litvin, F. L., Gear Geometry and Applied Theory, Prentice Hall, New Jersey, 1994.
22.Litvin, F. L. and Feng, P. H., “Computerized Design and Generation of Cycloidal Gearings,” Mech. Mach. Theory, Vol. 31, No. 7, pp. 891–911, 1996.
23.Litvin, F. L. and Feng, P. H., “Computerized Design, Generation, and Simulation of Meshing of Rotors of Screw Compressor,” Mech. Mach. Theory, Vol. 32, No. 2, pp. 137–160, 1997.
24.Litvin, F. L., Demenego, A. and Vecchiato, D., “Formation by Branches of Envelope to Parametric Families of Surfaces and Curves,” Computer methods in applied mechanics and engineering, Vol. 190, pp. 4587–4608, 2001.
25.Lin, C. C. and Tsai, L. W., “The Trajectory analysis of bevel planetary gear trains,” ASME Transaction, Journal of Mechanical Design, Vol. 115, pp. 164–170, 1993.
26.Liu, H. C., Tong, S. H. and Yang, D. C. H., “Trapping-Free Rotor for High-Sealing Lobe Pump,” ASME Transaction, Journal of Mechanical Design, Vol. 122, pp. 536–542, 2000.
27.Lai, T. S., “Geometric Design of Roller Drives with Cylindrical Meshing Elements,” Mech. Mach. Theory, Vol. 40, pp. 55–67, 2005.
28.Mahanay, J., “Gerotor Air Motor,” Machine Design, pp. 75–77, 1986.
29.Meng, J. L., Hsieh, K. E. and Tsay, C. B., “An Analytical Method for Synthesis of Cam Profiles,” Journal of the Chinese Society of Mechanical Engineers, Vol. 8, No. 4, pp. 271–276, 1987.
30.Mimmi, G. C. and Pennacchi, P. E., “Computation of Pressure Loads in the Three-Lobe Supercharger,” MECH 5832, ASME Design Engineering Technical Conferences, Sep. 13–16 Atlanta, GA., 1998.
31.Mimmi, G. C. and Pennacchi, P. E., “Analytical Model of a Particular Type of Positive Displacement Blower,” Journal of Mechanical Engineering Science Part C, Vol. 213, No. 5, pp. 517–526, 1999.
32.Mimmi, G. C. and Pennacchi, P. E., “Non-Undercutting Conditions in Internal Gears,” Mech. Mach. Theory , Vol. 35, No. 4, pp. 477–490, 2000.
33.Paffoni, B., “Pressure and Film Thickness in a Trochoidal Hydrostatic Gear Pump,” Proceedings of the I MECH E Part G, Journal of Aerospace Engineering, Vol. 217, No. 4, pp. 179–187, 2003.
34.Paffoni, B., Progri, R. and Gras, R., “Teeth Clearance Effects Upon Pressure and Film Thickness in a Trochoidal Hydrostatic Gear Pump,” Proceedings of the I MECH E Part G, Journal of Aerospace Engineering, Vol. 218, No. 4, pp. 247–256, 2004.
35.Ralf, Steffens, “Rotor Profile for a Roots Vacuum Pump,” U. S. Patent 5,152,684, 1992.
36.Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, 1993.
37.Su, S. H. and Tseng, C. H., “Generating Conjugate Shape using Piecewise Linear Functions,” Journal of Chinese Society of Mechanical Engineering, Vol. 20, No. 2, pp. 97–105, 1999.
38.Stosic, N. and Hanjalic, K., “Development and Optimization of Screw Machines with a Simulation Model–Part I: Profile Generation,” ASME Transaction, Journal of Fluids Engineering, Vol. 119, No. 3, pp. 659–663, 1997.
39.Stosic, N., Smith I. K. and Kovacevic, A., “Optimization of Screw Compressors,” Applied Thermal Engineering, Vol. 23, pp. 1177–1195, 2003.
40.Shih, T. Y., “Area Computation by Coordinates,” Journal of Surveying Engineering, Nov., pp. 145–154,1995.
41.Tsay, C. B., “Solving the Conjugated Curves of Roots Blower Lobe Profile by Analytic Method,” Journal of Machine, Vol. 13, No. 1, pp. 129–133, 1987.
42.Tsay, C. B. and Yu, C. Y., “Mathematical Model for the Profile of Gerotor Pumps,” Journal of the Chinese Society of Mechanical Engineers, Vol. 10, pp. 41–47, 1989.
43.Tsay, C. B. and Yu, C. Y., “The Mathematical Model of Gerotor Pump Applicable to Its Characteristic Study,” Journal of the Chinese Society of Mechanical Engineers, Vol.11, pp.385–391, 1990.
44.Tsay, C. B. and Chen, Y. C., “Characteristic Study on the Lobe Profile of Roots Blowers,” Proceedings of the 1998 Manufacture Technology Conference at National Cheng Kung University, Taiwan, ROC, pp. 173–179, 1998.
45.Tsai, Y. C. and Chin P. C., “Transmission and Automation in Design,” Journal of Mechanisms, Vol. 109, pp. 443–449, 1987.
46.Tsay, D. M. and Hwang G. S., “Application of the Theory of Envelope to the Determination of Camoid Profiles with Translating Followers,” ASME Transaction, Journal of Mechanical Design, Vol. 116, pp. 320–325, 1994.
47.Tsay, D. M. and Hwang G. S., “The Synthesis of Follower Motion of Camoids using Nonparametric B-Spline,” ASME Transaction, Journal of Mechanical Design, Vol. 118, pp. 138–143, 1996.
48.Vecchiato, D., Demenego, A., Argyris, J. and Litvin, F. L., “Geometry of a Cycloidal Pump,” Comput. Methods in Appl. Mech. Engrg. , Vol. 190, pp. 2309–2330, 2001.
49.Wang, P. Y., Fong, Z. H. and Fang, H. S., “Design Constraints of Five-Arc Roots Vacuum Pumps,” Journal of Mechanical Engineering Science Part C, Vol. 216, No. 2, pp. 225–234, 2002.
50.Wu, D. R., Luo, J. S., A Geometric Theory of Conjugate Tooth Surface, World Scientific, Singapore, 1992.
51.Wagon, S. Mathematica in Action, 2nd ed. New York, W. H. Freeman, 2000.
52.Yu, D. and Beachley, N., “On the Mechanical Efficiency of Differential Gearing,” ASME Transaction, Journal of Mechanisms, Vol. 107, pp. 61–67, 1985.
53.Yang, D. C. H. and Blanche, J. G., “Design and Application Guidelines for Cycloid Drives with Machining Tolerances,” Mech. Mach. Theory, Vol. 25, pp. 487–501, 1990.
54.Yan, H. S. and Cheng, W. T., “Curvature Analysis of Spatial Cam-Follower Mechanisms,” Mech. Mach. Theory, Vol. 34, pp. 319–339, 1999.
55.Yan, H. S. and Lai, T. S., “Geometry Design of an Elementary Planetary Gear Train with Cylindrical Tooth-Profiles,” Mech. Mach. Theory, Vol. 37, pp. 757–767, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 黃瑞明,〈歐陸法系下律師社會角色之探討〉,載於《法學叢刊》三十四卷四期,1989年10月。
2. 黃旭田,〈律師大量增加對律師執業及台北律師公會之影響〉,載於《律師雜誌》251期,2000年8月。
3. 黃旭田,〈內憂外患下台灣地區律師團體的回顧、現況與展望──以中華民國律師公會全國聯合會組織變革為中心〉,載於《月旦法學》第83期,2002年4月。
4. 蘇欐弘,〈撫今追昔,談台灣司法與律師〉,戴於《全國律師》1997年10月。
5. 蔡德揚,〈專訪司法改革的鬥士──林永頌律師〉,載於《全國律師》,1998年6月號。
6. 黃秀蘭,〈專訪恬淡自怡的林根煌律師〉,載於《全國律師》,1998年1月號。
7. 周村來,〈愈成熟的稻穗愈下垂─訪張英傑律師〉,載於《全國律師》1997年8月。
8. 周村來,〈訪高雄律師公會國寶級律師王連芳道長〉,載於《全國律師》創刊號,1997年1月。
9. 何曜男,〈專訪高雄律師公會理事長──林復華律師〉,載於《全國律師》1998年4月號。
10. 陳傳岳、范曉玲,〈談對「全國司法改革會議」召開的期待──創造司法再造的契機〉,載於《全國律師》1998年12月號。
11. 孫慧敏,〈從東京、北京到上海:日系法學教育與中國律師的養成〉,收錄於《法制史研究》第三期,2002年12月。
12. 謝佑平,〈中國古代「辯護士」、「訟師」與現代職業律師的差異〉,載於《法令月刊》第五十三卷第六期。
13. 黃鴻昌,〈議「民間司改會」所謂之「法官評鑑」〉,載於《律師雜誌》第231期(1998年12月)。
14. 孫慧敏,〈中國律師制度的建立──以上海為中心的觀察(1911-1912)〉,載於《法制史研究》第二期,2001年12月。
15. 范光群,〈論現代律師的功能──兼談律師法修正之意義〉,載於《律師通訊》174期。