跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊定家
研究生(外文):Ting-chia Yan
論文名稱:串並聯式工具機之動態靈敏度分析
論文名稱(外文):Dynamic Sensitivity Analysis of Series-Parallel Machine Tool
指導教授:蕭庭郎
指導教授(外文):Ting-nung Shiau
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:65
中文關鍵詞:動態靈敏度
外文關鍵詞:Dynamic Sensitivity Analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:454
  • 評分評分:
  • 下載下載:94
  • 收藏至我的研究室書目清單書目收藏:0
本文以台灣工業技術研究院機械所開發的串並聯式工具機為例子,進行3-PRS串並聯式機構之動態靈敏度分析之研究。近年來,工具機的發展邁向高精準度化,而結構振動會對加工精度造成負面影響,因此為了提升工具機效能,機構之動態靈敏度分析實有必要深入研究的。
3-PRS串並聯式機構的設計變數包括靜平台尺寸、動平台尺寸、連桿長度、連桿材料密度、連桿半徑、迴轉對接頭剛性和球接頭剛性等。上述參數對工具機動態特性均會有不同的影響。本文首先利用牛頓法推導3-PRS串並聯式機構運動方程式,經由數值積分方法探討各設計變數變化對系統最大振幅的影響。接著再利用逆向運動學理論推導刀具頭軌跡與滑塊進給量之間的關係式,並使用線性化的技巧來處理複雜的三角微分方程式,以求得設計變數及滑塊進给量對系統自然頻率的靈敏度。
根據數值結果顯示,改變動平台半徑,主要影響到模態中與動平台轉角方向自由度較為相關的自然頻率。改變連桿設計變數及迴轉對接頭剛性均影響到模態中與連桿自由度較為相關的自然頻率。而最高的自然頻率只與動平台半徑與球接頭剛性有關。另外,當系統自然頻率的模態中動平台三個轉角方向趨近於零時,這些自然頻率對位置改變的靈敏度很小。
A hybrid machine tool developed by the Industry Technology Research Institute (ITRI) in Taiwan is used to study the dynamic sensitivity of the 3-PRS series-parallel mechanism. In recent years, the development of machine tools trends toward high accuracy. The accuracy of machine tools is affected greatly by structure vibration. In order to improve system characteristics, it is necessary to study the dynamic sensitivity of the mechanism.
The design variables of the mechanism considered in this study include the radii of the base and moving platforms; lengths, densities and radii of the links; the stiffness of revolute and spherical joints. These parameters will greatly affect the dynamic characteristics of the mechanism. The Newtonian approach is employed to formulate the system equations of motion and the Runge-Kutta method is applied to simulate the dynamic responses of tool tip with the design variables. The relation between sliders’ locations and the tool tip profile is derived by the inverse kinematics. A linearization technique is applied to deal with the complex trigonometric differential equations. The dynamic sensitivity can be analyzed by solving the linearized system equations of motion, and the sensitivity of design parameters and different sliders’ location on the natural frequencies are discussed.
Based on the numerical results, it can be found that the natural frequencies associated with the rotational displacements of the moving platform are affected by the radius of the moving platform. The natural frequencies associated with the degree of freedom of links are affected by the parameters of links or the stiffness of revolute joints. The highest natural frequency is only affected by the radius of the moving platform and stiffness of spherical joints. Besides, some system natural frequencies are not sensitive to sliders’ locations when the corresponding mode shapes in the rotational displacements of the moving platform are close to zero.
摘要 I
ABSTRACT III
CONTENTS V
LIST OF TABLES VII
LIST OF FIGURES VIII
NOMENCLATURES XI
CHAPTERS PAGE

CHAPTER 1 INTRODUCTION
1-1 Motivation of Research 1
1-2 Literature Review 2
1-3 Outline 5

CHAPTER 2 KINEMATIC ANALYSIS
2-1 Direct Kinematics 6
2-2 Inverse Kinematics 13

CHAPTER 3 DYNAMIS ANALYSIS
3-1 Formulation of Equations of Motion 20
3-2 Linearization Method 25
3-3 Analysis of System Natural Frequency 26

CHAPTER 4 NUMERICAL RESULTS AND DISCUSSIONS
4-1 The Sensitivity Analysis of System Maximum Response for Design Variables 30
4-2 The Sensitivity Analysis of System Natural Frequencies and Mode Shapes for
Design Variables 31
4-3 The Sensitivity Analysis of System Natural Frequencies for Different Sliders’
Locations 33
4-4 The Sensitivity Analysis of System Natural Frequencies for a Designed Trajectory
34

CHAPTER 5 CONCLUSIONS AND FUTURE STUDY
5-1 Conclusions 59
5-2 Future Study 60

REFERENCE 61
V. E. V. E. Gough and S. G. Whitehall, 1962, “Niversal Tyre Test Machine,” Proceedings of 9th International Technical Congress, F.I.S.I.T.A. pp. 177.
D. Stewart, 1965, “A Platform with Six Degrees of Freedom,” Proceedings of the Institute of Mechanical Engineering, Vol.180, pp.371-386.
B. Dasgupta and T.S. Mruthyunjaya, 2000, “The Stewart Platform Manipulator: a Review,” Mechanism and Machine Theory, Vol.35, pp.15-40.
K. H. Hunt, 1978, “Kinematic Geometry of Mechanism” Clarendon Press, Oxford.
K. H. Hunt, 1983, “Structural Kinematics of In-Parallel-Actuated Robot Arms,” ASME Journal of Mechanisms, Transmission and Automation in Design, Vol. 105, pp.705-712.
E. F. Fichter, 1986, “A Stewart Platform-Based Manipulator: General Theory and Practical Construction,” International Journal of Robotics Research, Vol.5, pp. 157-182.
P. Nanua, K. J. Waldron and V. Murthy, 1990, “Direct Kinematic Solution of a Stewart Platform,” IEEE Journal of Robotics and Automation, Vol.6, pp.438-443.
C. Innocenti and V. Parenti-Castelli, 1990, “Direct Position Analysis of the Stewart Platform Mechanism,” Mechanism and Machine Theory, Vol.25, pp.611-621.
L. W. Tsai, 1999, “Robot Analysis, ” John Wiley & Song Inc.
W. Liu, C. D. Crane, and J. Duffy, 1994, “Closed Form Forward Displacement Analysis of the 4-5 In-Parallel Platforms,” ASME Journal of Mechanical Design, Vol. 116, pp.47-53.
B. Dasgupta and T. S. Mruthyunjaya, 1994, “A Canonical Formulation of the Direct Position Kinematics Problem for a General 6-6 Stewart Platform,” Mechanism and Machine Theory, Vol.29, pp.819-927.
M. Raghavan, 1993, “The Stewart Platform of General Geometry Has 40 Configurations,” ASME Journal of Mechanical Design, Vol.115, pp.277-282.
M. Griffis and J. Duffy, 1989, “A Forward Displacement Analysis of a Class of Stewart Platforms,” Journal of Robotic Systems, Vol.6, pp.703-720.
D.-M. Ku, 1999, “Direct displacement analysis of a Stewart platform mechanism,” Mechanism and Machine Theory, Vol. 34, pp.453-465.
K.-M. Lee and D.K. Shah, 1988, “Kinematics Analysis of a Three Degree of Freedom In-Parallel Actuated Manipulator,” IEEE Journal of Robotics and Automation, Vol.4, pp.354-360.
F. Tahmasebi and L.-W. Tsai, 1994, “Closed-Form Direct Kinematics Solutions of a New Parallel Minimanipulator,” Journal of Mechanical Design, Vol.116, pp.1141-1147.
C.-D. Zhang and S.-M. Song, 1994, “Forward Position Analysis of Nearly General Stewart Platform,” ASME Journal of Mechanical Design, Vol.116, pp.1141-1147.
M.-S. Tsai, T.-N. Shiau and Y.-J. Tsai, 2003, “Direct Kinematic Analysis of a 3-PRS Series-Parallel Mechanism,” Mechanism and Machine Theory, Vol.38, pp.71-83.
S.-H. Ling and M.-Z. Huang, 1995, “Kinestatic Analysis of General Parallel Manipulators,” ASME Journal of Mechanical Design, Vol.117, pp.601-606.
J. Wang and X.-J. Liu, 2003, “Analysis of a novel cylindrical 3-DOF parallel robot,” Robotics and Autonomous Systems, Vol.42, pp.31-46.
J.A. Carretero, R.P. Podhorodeski, M.A. NAhon, C.M Gosselin, 2000, “Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator, ”ASME Journal of Mechanical Design, Vol. 122, pp.17-24.
M. Husain and K. J. Waldron, 1994, “Position Kinematics of a Three-Limbed Mixed Mechanism,” ASME Journal of Mechanical Design, Vol.116, pp.924-929.
Z. Huang, W.-S. Tao and Y.-F. Fang, 1996, “Study on the Kinematic Characteristics of 3 DOF In-Parallel Actuated Platform Mechanism,” Mechanism and Machine Theory, Vol.31, pp.999-1007.
林昆穎,2001,在進给速度誤差下之串並聯式工具機誤差分析與補償,國立中正大學碩士論文。
郭乃華,2002,在進给加速度誤差下之串並聯式工具機誤差分析,國立中正大學碩士論文。
賴鴻琪,2003,具滾珠導螺桿背隙之串並聯式工具機誤差分析與最佳化設計,國立中正大學碩士論文。
袁偉翔,2002,3-PRS並聯式機構之動態建模與控制器設計,國立中正大學碩士論文。
鄭運傑,2005,具撓性連桿之串並聯式工具機動態分析,國立中正大學碩士論文。
吳國誠,2004,具接頭間隙之串並聯式工具機之動態行為研究,國立中正大學碩士論文。
Y. Li and Q. Xu, 2005, “Kinematic and Inverse Dynamic Analysis for a General 3-PRS Spatial Parallel Mechanism,” Robotica, Vol.23, pp.219-229.
J.-S. Chen and W.-Y. Hsu, 2004, “Design and Analysis of a Tripod Machine Tool with an Integrated Cartesian Guiding and Metrology Mechanism,” Precision Engineering, Vol. 28, pp.46–57.
K.-C. Fan, H. Wang, J.-W. Zhao, T.-H Chang, 2003, “Sensitivity Analysis of the 3-PRS Parallel Kinematic Spindle Platform of a Serial-Parallel Machine Tool ,”International Journal of Machine Tools and Manufacture, Vol.43 , pp.1561-1596.
R.L. Fox and M.P. Kapoor, 1968, “Rates of Change of Eigenvalues and Eigenvectors,” AIAA Journal, Vol.6, pp.2426-2429.
T.-N. Shiau and S.-J. Chang, 1991, “Optimization of Rotating Blades with Dynamic Behavior Constraints,” Journal of Aerospace Engineering, Vol.4, pp.144.
李恩達,1993,結構動態靈敏度實驗與應用,國立清華大學碩士論文。

Z. Wang and S. Chen, 1999, “Sensitivity Analysis of Eigenmodes and Dynamic Responses for Intelligent Structures,” Finite Element in Analysis and Design. Vol.33. pp.71-81.
Z. Wang and S. Chen, 1999, “Sensitivity Analysis of Eigenmodes and Dynamic Responses for Intelligent Structures,” Finite Element in Analysis and Design. Vol.33. pp.71-81.
A. Garstecki and Z. Pozorski, 2003, “Sensitivity analysis for variable dynamic load parameters,” Computer-Assisted Mechanics and Engineering Sciences . Vol. 10, pp. 139- 148.
F. Freudenstein and Maki, 1959, “Structural Error Analysis in Plane Kinematic
Synthesis, ” Journal of Engineering for Industry ,Vol.81, pp.15-22
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top