跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/28 18:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高偉誠
研究生(外文):Wei-Cheng Kao
論文名稱:單一粗糙峰之接觸行為的奈米力學探討
論文名稱(外文):Molecular Simulation of Single Asperity Contact
指導教授:鄭友仁
指導教授(外文):Y.R. Jeng
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:90
中文關鍵詞:單一粗糙峰表面接觸最小能量法
外文關鍵詞:Minimum potential energySurface contactSingle asperity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文利用最小能量原理搭配非線性有限元素的計算來研究單一粗糙峰受壓後的變形現象,並討論不同尺度下的粗糙峰間的差異,以及考慮不同的勢能函數下粗糙峰與平板間的關係。本研究發現以Born-Mayer勢能函數分析微觀尺度下粗糙峰的彈塑性行為傳統尺度下有著相同的趨勢,並從中可觀察出差排現象;以Morse 勢能函數模擬中發現尺度大小會對原子級的跳躍接觸現象造成影響,當粗糙峰半徑愈大時,此現象越早發生。另外,下壓平板與粗糙峰分離時,因為原子吸附造成的原子遷移產生了頸縮現象,也會因為尺度與結合能的變化而有所不同。研究結果也顯示,由於原子吸附的現象,平板與粗糙峰間的接觸和奈米線及奈米點的形成有釵h值得探討的特性。
This dissertation utilized the principle of minimum potential energy and non-linear finite element method to elucidate the deformation mechanism of a single asperity under loading. The simulation used the Born-Mayer potential detects that the deformation mechanism of nano-scale has the same trends with mirco-scale. In Morse potential situation reveals that the scale size affects the atomistic jump-to-contact behavior. The increasing the radius prompts the early onset of phenomenon. Furthermore, owing to the atom migrations caused by adhesion, an extended neck is gradually formed upon the retraction of the asperity from contact. The results also show that the adhesion force between the flat and the asperity is beneficial to research the Nanodots and Nanowires.
摘要……………………………………………………………Ⅰ
英文摘要……………………………………………………………Ⅱ
目錄……………………………………………………………Ⅲ
表目錄……………………………………………………………Ⅵ
圖目錄……………………………………………………………Ⅶ
第一章 緒論……………………………………………………………1
1-1 前言……………………………………………………………1
1-2 研究動機及目的……………………………………………………………4
1-3 本文架構……………………………………………………………7
第二章 理論基礎……………………………………………………………10
2-1 接觸力學之背景……………………………………………………………10
2-1-1表面接觸力學……………………………………………………………11
2-1-2 CEB與ZMC理論……………………………………………………………12
2-1-3 彈-塑性理論……………………………………………………………13
2-1-4 有限元素分析法……………………………………………………………18
2-1-5 JKR理論……………………………………………………………18
2-1-6 DMT理論……………………………………………………………20
2-2 分子力學之背景介紹……………………………………………………………21
2-2-1蒙地卡羅法(Monte Carlo Method)……………………………………21
2-2-2分子動力學(Molecular dynamics)……………………………………22
2-2-3最小能量法(Minimum potential energy)……………………………………23
第三章 數值模擬方法……………………………………………………………27
3-1 物理模型……………………………………………………………27
3-2分子作用力及勢能函數……………………………………………………………28
3-3 截斷半徑……………………………………………………………31
3-4 表列法……………………………………………………………33
3-5 平衡方程式的建立……………………………………………………………35
3-6 邊界限制條件……………………………………………………………39
3-7 模擬流程圖……………………………………………………………41
第四章 模擬結果與討論……………………………………………………………49
4-1 模型設定與架構……………………………………………………………49
4-2 三維模型模擬分析……………………………………………………………50
4-3 二維模型模擬分析……………………………………………53
4-4 差排現象……………………………………………………54
4-5介面間Morse勢能函數下之效應……………………………55
4-5-1原子跳躍接觸現象……………………………………………………………55
4-5-2吸附現象……………………………………………………………56
4-6不同勢能間的比較……………………………………………………………60
第五章 結論與建議……………………………………………………………83
5-1 結論……………………………………………………………83
5-2 建議與未來工作………………………………………………85
參考文獻………………………………………………………………86
[1] 何怡帆,高世平,“我國奈米科技研究之規劃與推動概況”,自 然科學簡訊,第十三卷第四期, pp. 125-129, (2001)
[2] T. Inamura, H. Suzuki, and N. Takezawa, “Cutting experiments in a computer using atomic models of a copper crystal and a diamond tool”, Int. J. Japan Soc. Prec. Eng., Vol. 25, No. 4, (1991)
[3] Yeau-Ren Jeng and Chung-Ming Tan “Computer simulation of tension experiments of a thin film using an atomic model”, Phys. Rev. B, Vol. 65, pp. 174107(1-7), (2002)
[4] Yeau-Ren Jeng and Chung-Ming Tan , “Theoretical study of dislocation emission around a nanoindentation using a static atomistic model”, PhysRevB.69.104109, 2004
[5] Pil-Ryung Cha, David J. Srolovitz, T. Kyle Vanderlick, “Molecular dynamics simulation of single asperity contact”, Acta Materialia 52(2004) 3983-3996
[6] Hertz, H., On Contact of Elastic Solids. J. Reine Angew. Math., 92: pp. 156-171 1881.
[7] J. A. Greenwood and J. B. P. Williamson, “Contact of Nominal Flat Surface.”, Proceeding of the Royal Society of London, A295, No. 1442,1996, pp. 300-319
[8] Nayak, P. R., 1973, ”Random Process Model of Rough Surfaces in Plastic Contact,” Wear, Vol. 26, pp. 305-333.
[9] Chang, W. R., Etsion, I. and Bogy, D. B., 1987, “ An elastic-plastic model for the contact of rough surfaces ,” ASME Journal of Tribology, Vol. 109, pp. 257-263.
[10] Y. Zhao, D. McCool and L. Chang, “An Asperity Microcontact Model Incroporating the Transition From Elastic Deformation to Fully Plastic Flow,” ASME Journal of Tribology
[11] Jeng, Y. R. and Wang P. Y., 2003, “An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation,” ASME Journal of Tribology, Vol. 125, pp. 232-240.
[12] Horng, J. H., 1998, "An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surfaces," ASME Transaction, Journal of Tribology, Vol. 120, No. 1, pp. 82-89
[13] Kogut, L., and Etsion, I., 2002, “Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat,” ASME Journal of Applied Mechanics, Vol. 69, pp. 657-662.
[14] Kogut, L., and Etsion, I., 2003, “A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surface,” Tribology Transactions 46, pp. 383-390.
[15] K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface Energy and the Contact ofElastic Body,” Proc. Roy. Soc. London. A., Vol. 324, pp.301-313, 1971.
[16] B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of Contact Deformationson the Adhesion of Particles,” J. Colloid Interface Sci., Vol.53, p.314-326, 1975.
[17] McCool, J. I., 1986, “ Comparison of models for the contact of rough surfaces ,” Wear, Vol. 107, pp. 37-60.
[18] Powierza, Z. H., Klimczak, T. and Polijaniuk, A., 1992, “ On the Experimental Verification of the Greenwood-Williamson Model for the Contact of Rough Surface ,” Wear, Vol. 154, pp. 115-124.
[19] Pullen, J. and Williamson, J. B. P., 1972, “ On the plastic of rough surfaces ,” Proceeding of the Royal Society of London, A327, pp. 159-173.
[20] J. B. P. Williamson, J. Pullen and R. T. Hunt, “ The Shape of Solid Surfaces ”, Surface Mechanics, a symposium volume, ASME, 1970, pp.24-35.
[21] E. J. Abbot and F. A. Firestone, “ Specifying Surface Quality-A Method Based on AccurateMeasurement and Comparison ”, Institution of Mechanical Engineers, Vol. 55, 1933, pp. 569
[22] C. Hardy, C. N. Baronet, G. V. Tordion, ” Elastico-plastic indentation of a half-space by a rigid sphere. ”, Int. J. Numer. Methods Eng., 3(1971),451-462
[23] K. L. Johnson, “Contact Mechanics”, Cambridge University Press, Cambridge
[24] Robert L. Jackson and Itzhak Green, 2005, “A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat,” ASME Journal of Tribology, Vol. 127, pp. 343-354.
[25] D. Tabor, “Surface Forces and Surface Interactions,” J. Colloid Interface Sci., Vol.58, No. 1, 1977.
[26]Metropolis,A.W.Resenbluth,M.N.Rosenbluth,A.H.Teller,and.E.Teller,J.Chem.Phys.,“Equation.of.State.Calculat-ions.by.Fast.Computing.Machines”,Vol.21,1953,No.6,pp.1087-1092.
[27] J. H. Irving, J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950).
[28] B. Alder, T. Wainwright, J. Chem. Phys. 31, 459 (1959).
[29] B. J. Alder, T. E. Wainwright, Phys. Rev. A, 1, 18 (1970).
[30] Yeau-Ren Jeng, Chung-Ming Tan, “Study of Nanoindentation Using FEM Atomic Model”, ASME Journal of tribology(2004)
[31] J.M.Haile, “Molecular Dynamics Simulation”, Wiley Interscience Pub.,1992,pp.188-217
[32] Harrison, Don E., Jr. “A molecular dynamics simulation study of the influence of the ion-atom potential function upon sputtering”Journal of Applied Physics (1981), 52(3, Pt. 1).
[33] Max. Born and Joseph E. Mayer, “The lattice theory of ion crystals”,Zeitschrift fuer Physik,phys.(1932),vol.75,p.p1-18.
[34] R.A.Johnson“Analytic Nearest-neighbor Model for FCC Metals”,Phys.Rev.B,Vol.37(8),1987,pp.3924-3931
[35] P.Heino,H.Hakkinen and K.Kaski,“Molecular Dynamics Study of Copper.with.Defects.under.Strain”Phys.Rev.B,Vol.58, No.2,1998,pp.641-652
[36] J.F.Justo, M.Z.Bazant, E.Kaxiras, V.V.Bulatov and S.Yip, “InteratomicPoential.For.Silicon.Defects.and.Disoredered.Phase”,Phys.Rev.B,Vol.58,No.5,1998,pp.2539-2550
[37] S.Shimada, N.Ikawa, H.Tanaka, G.Ohmori and J.Uchikoshi, “Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation”,Annals of the CIRP,Vol.42,1993,pp.91-94
[38] Verlet L., “Computer ‘experiments’ on classical fluids II,Equilibrium correlation function,” Phys. Rev, Vol. 165, pp.201~14,(1968).
[39] B. Quentrec and C. Brot,“New Method for Searching for Neighborsin Molecular Dynamics Computations,” J. Comput. Phys. Vol. 13,pp.430, (1975).
[40] John Wiley & Sons, “Non-linear Finite Element Analysis of Solids and Structures”, M. A. Crisfield, (1997).
[41] Chang, W. R., Etsion, I., and Bogy, D. B., 1988, ‘‘Static Friction Coefficient Model for Metallic Rough Surfaces,’’ ASME J. Tribol., 110, pp. 57–63.
[42] Francis, H. A., 1976, “Phenomenological Analysis of Plastic Spherical Indentation,” ASME Journal of Engineering Materials and Technology, July, pp. 272-281
[43] L. C. Zhang, K. L. Johnson and W. C. D. Cheong, “A Molecular Dynamics Study of Scale Effects on the Friction of Single-Asperity Contacts,” Tribology Letters, Vol. 10, No1-2, 2001, pp. 23-28
[44] S. Blom, H. Olin, J. L. Costa-Krämer, N. García, M. Jonson, P. A. Serena, and R. I.Shekhter, “Free-Electron Model for Mesoscopic Force Fluctuations inNanowires,” Phys. Rev. B, Vol. 57(15), pp. 8830-8833, 1998.
[45] N. Agraït, G. Rubio, and S. Vieira, “Plastic Deformation of Nanometer-scale Gold Connective Necks,” Phys. Rev. L., Vol. 74(20), pp. 3995-3998, 1995.
[46] K. Takayanagi, Y. Kondo, and H. Ohnishi, “Miniaturized STM Working Simultaneously in UHV Electron Microscope Conductance Quantization of Suspended Gold Nanowires,” JEOL News, Vol. 34E(1), pp. 20-23, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top