跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 10:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林漢益
研究生(外文):Han-yi Lin
論文名稱:自組裝薄膜在微元件磨潤之研究
論文名稱(外文):Tribological Study of Self-Assembled Monolayer on Micromachine
指導教授:鄭友仁
指導教授(外文):Yeau-ren Jeng
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:112
中文關鍵詞:十五烷基硫醇微機電系統黏附磨擦鍍膜自組裝薄膜磨損接觸角
外文關鍵詞:contact angleHDTwearself-assembled monolayercoating filmfrictionMEMsadhesion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:442
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在微機電元件或精密機械具有相對運動的接觸表面間,常存在有不同種類粒子與液體膜等,這些因素會增加接觸面間之黏附、磨擦與磨損效應,以致工業上常以鍍膜方式減少運動型微機電元件的這些表面性質,其中自組裝薄膜被證實具有降低抗黏著與磨擦之弁遄A是未來極具可應用性之技術。
本論文的目的就是為建立微元件的自組裝薄膜製程技術與性能分析,在此研究中使用不同末端鍵結(-CH3, -COOH)和前端鍵結(-SH)烷基硫醇的自組裝薄膜,並使用原子力顯微鏡(AFM)、奈米測試儀、接觸角分析儀,來分析末端或是前端鍵結對表面的黏附力、磨擦力和表面能的影響,並探討自組裝薄膜對基材表面與鍍膜本身性質之影響。我們在自組裝薄膜上設計製造不同表面粗糙度之表面,探討其加工表面形貌對微元件之真實接觸面積、黏附力及毛細力的影響效應,以取得較佳之表面形貌,提供專業參考選用。
本研究中發現,自組裝薄膜十五烷基硫醇(HDT)的表面末端官能基(-CH3)為長鏈狀碳鍵結有著高度柔順度,使探針掃描速度對表面磨擦力影響很小,並且薄膜表面具有最低黏附力和磨擦力。製作表面形貌實驗中,我們發現在HDT薄膜表面壓製Vicker表面形貌具有最低的表面能,故可推斷表面具有最低的黏附力。
In the MEMS and precision machine, particles and liquid films (capillary force) are often presented at contact interfaces. These two factors will enhance the adhesion, friction and wear of contacting surfaces. In the meantime, in order to minimize the adhesion and wear problems of moving MEMS, numerous coating methods are being designed to improve these surface properties. Self-assembled monolayer (SAM) coating has been demonstrated to achieve anti-stiction and low friction characteristics when properly integrated into microstructure release process.
The objective is to establish analysis and manufacture technology of SAMs in MEMS. For this purpose, several kinds of SAMs, including alkyl and biphenyl spacer chains with different surface terminal groups (-CH3,-COOH), and head groups (-SH), were prepared. The influence of spacer chains, surface terminal groups, and head groups on adhesion, friction and surface energy properties were investigated by AFM, nano tester and contact angle analyser. The effect of self-assembled monlayers on matrix surface and coating film characteristics. Moreover, in order to design the optimal surface, the effects of adhesion and capillary force of surface micromaching on the real contact area of microparts are investigated.
In this study, it is found that HDT exhibits the smallest adhesive force and friction force, because of low work of adhesion of -CH3 surface terminal group, and high-compliance long carbon chain. The influence of velocity on friction forces of HDT film is very small. In order to design the optimal surface, we found that Vicker’ surface has lowest surface energy, and adhesion properties.
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅴ
圖目錄 Ⅵ

第一章 緒論...........................................1
1.1 前言...........................................1
1.2 研究動機與目的.................................3
1.3 論文架構.......................................4

第二章 理論基礎和文獻回顧.............................7
2.1 有機-無機分子層................................7
2.1.1 Langmuir-Blodgett 薄膜.........................7
2.1.2 Self-assembled Monolayers 薄膜.................9
2.2 自組裝薄膜的磨潤性能與機械性質................13
2.3 黏附力文獻回顧................................15
2.4 毛細力文獻回顧................................16
2.5 表面能文獻回顧................................19
2.6 附著力........................................20
2.7 磨擦力與磨擦係數..............................22

第三章 實驗設備與實驗流程............................34
3.1 實驗設備......................................34
3.1.1 射頻濺射鍍膜系統..............................34
3.1.2 原子力顯微鏡..................................35
3.1.3 奈米測試儀....................................38
3.1.4 接觸角量測儀..................................39
3.2 薄膜和表面形貌製作程序........................40
3.2.1 實驗藥品與材料................................40
3.2.2 基板的製備....................................41
3.2.3 薄膜的製作....................................41
3.2.4 製作表面形貌..................................42
3.2.5 自組裝薄膜的製作..............................43

第四章 實驗結果分析與討論............................59
4.1 薄膜性質分析..................................59
4.1.1 薄膜剛性量測分析..............................59
4.1.2 薄膜抗刮深度量測..................... ........60
4.1.3 薄膜接觸角和表面能分析........................61
4.1.4 薄膜接觸角和表面能分析考慮溫度變化............62
4.1.5 薄膜黏附力分析................................63
4.1.6 探針速度對薄膜黏附力的影響........... ........63
4.1.7 探針速度對薄膜磨擦力的影響........... ........64
4.2 不同材質探針頭薄膜性質分析....................64
4.2.1 不同材質探針頭對薄膜黏附力的影響..............65
4.2.2 不同探針頭速度對薄膜黏附力的影響... ..........65
4.2.3 不同探針頭速度對薄膜磨擦力的影響... ..........66
4.3 不同表面形貌對薄膜性質影響....................67
4.3.1 不同表面形貌對HDT薄膜接觸角和表面能影響.......67
4.3.2 不同表面形貌對MHA薄膜接觸角和表面能影響.......68
4.3.3 不同表面形貌對ODT薄膜接觸角和表面能影響.......68
第五章 結論與建議...................................102
5.1 結論.........................................102
5.2 建議.........................................103
參考文獻................................................105
[1]K. Deng, R. J. Collins, M. Mehregany, C.N. Sukenik, and J. Electrochem, 1995, Soc.142, pp.1278.
[2]J.N. Ding, P.L. wong, and J.C. Yang, 2006, “Friction and fracture properties of polysilicon coated with self-assembled monolayers,” Wear, Vol.260, pp.209-214.
[3]Brarat Bhushan, Toshi Kasai, Gerit, Kulik, Laura Barbieri, and Patril Hoffmann, 2005, “AFM study of perfluoroalkylsilane and alkylsilane self-assembled monlayers for anti-stiction in MEMS/NEMS,” Ultramicroscopy, Vol.105, pp.176-188.
[4]Pashley, M. D., Pethica, J. B., and Tabor, D., 1980, “Adhesion and Micromechanical Properties of Metal Surfaces,” Wear, Vol.100, pp.7-13.
[5]Chowdhury, S. K. and Gbosh, P., 1994, “Adhesion and Adhesional Friction at the Contact Between Solids,” Wear, Vol.174, pp.9-19.
[6]Greenwood, J. A., 1997, “Adhesion of Elastic Spheres,” Proc. Roy. Soc. London, Vol.453, pp.1277-1297.
[7]Johnson, K. L., and Greenwood, J. A., 1997, “An Adhesion Map for the Contact of Elastic Spheres,” Journal of Colloid and Interface Science, Vol.192, pp.326-333.
[8]Blau, P. J., 1992, ASME Tribology handbook, The Materials Information Society.
[9]Li, J., Cui, Z., and Baker, M. A., 2004, “A Study of the Surface Chemistry, Morphology and Wear of Silicon Based MEMS,” Surface and Interface Analysis, Vol. 36, No.8, pp.1254-1258.
[10]Bhushan, B., and Huiwen L., 2004, “Micro/Nanoscale Tribological and Mechanical Characterization for MEMS/NEMS,” Proceedings of SPIE-The International Society for Optical Engineering, Vol. 5343, pp.194-206.
[11]Bhushan, B., 2005, “Nanotribology and Nanomechanics,” Wear, Vol.259, No.7-12, pp.1507-1531.
[12]Lee, S. C., and Polycarpou, A. A., 2004, “Adhesion Forces for Sub-10nm Flying-Height Magnetic Storage Head Disk Interfaces,” ASME Journal of Tribology, Vol.126, pp.334-341.
[13]K. Deng, R. J. Collins, M. Mehregany, and C.N. Sukenik, 1995, J. Electrochem, Soc.142. pp.1278.
[14]J.N. Ding, P.L. wong, and J.C. Yang, 2006, “Friction and fracture properties of polysilicon coated with self-assembled monolayers,” Wear, Vol.260, pp.209-214.
[15]Brarat Bhushan, Toshi Kasai, Gerit, Kulik, Laura Barbieri, and Patril Hoffmann, 2005, “AFM study of perfluoroalkylsilane and alkylsilane self-assembled monlayers for anti-stiction in MEMS/NEMS,” Ultramicroscopy, Vol.105, pp.176-188.
[16]I. Langmir, 1917, J. Am. Chem., Soc.39, pp.1848.
[17]I. Langmir, 1920, Trans. Faraday., Soc.15, pp.62.
[18]K. A. Blodgett, 1935, J. Am. Chem. Soc.57, pp.107.
[19]W.C.Bigelow, D.L. Pickett, and W. A. Zisman, 1946, Collid Interface Sci.1, pp.513.
[20]J. Sagiv, and J. Am. Chen., 1980, Soc.102, pp.92.
[21]R. G. Nuzzo, D. L. Allara, and J. Am. Chen., 1983, Soc.105, pp.4481.
[22]A. Kudelski, 2003, “Chemisorption of 2-Mercaptoethanol on Silver, Copper, and Gold: Direct Raman Evidence of Acid-InducedChanges in Adsorption/Desorption Equilibria,” Langmuir, 19, pp.3805-3813.
[23]A. Kudelski, 2002, “Raman study on the structure of 3-mercaptopropionic acid monolayers on the silver,” Surface Science, pp.219-223.
[24]H. Hagenstrom, M. A. Schneeweiss, and D. M. Kolb, 1999, “Modification of a Au(111) Electrode with Ethanethiol. 2. Copper Electrodeposition,” Langmuir, 15, pp.7802-7809.
[25]R. G. Nuzzo, D. L. Allara, and J. Am. Chem., 1983, Soc.105, pp.4481.
[26]R. G. Nuzzo, F. A. Fusco, D. A. Allara, and J. Am. Chem., 1987, Soc.109, pp.2358.
[27]M. D. Porter, B. B, Thomas, D. L. Allara, C. E. D. Chidsey, and J. Am. Chem., 1987, Soc.109, pp.3559.
[28]Pehg Dia, Dianlu Jiang, Xiaoli Cui, and J. Electroanaly. Chem., 1999, 464, pp.61.
[29]Masayuki Ohtani, Tomohide Sunagawa, and J. Electroanaly. Chem., 1997, 429, pp.75.
[30]V. P. Y. Gadzekpo, K. P. Xiao, Hiroshi Aoki, and Anal. Chem., 1999, 71, pp.5109.
[31]L. Strong, G. M. Whitesides, 1988, Langmuir, 4, pp.546.
[32]A. Ulman, N. Tilliman, J. E. Ellers, 1989, Langmuir, 5, pp.1147.
[33]C. E. D. Chidsey, G. Y. Liu, Y. P. Rowntree, G. Scoles, and J. Chem. Phys., 1989, 91, 4421.
[34]P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. K. Parikh, R. G. Nuzzo, and J. Am. Chem.,1911, Soc.113, pp.7152.
[35]O. Azzaroni, M. E. Vela, M. Fonticelli, G. Benitez, P. Carro, B. Blum, and R. C. Salvarezza, 2003, “Electrodesorption Potentials of Self-Assembled Alkanethiolate Monolayers on Copper Electrodes. An Experimental and Theoretical Study,” J. Phys. Chem. B, 107, 48, pp.13446-13454.
[36]M. J. Esplandiu, H. Hagenstrom, and D. M. Kolb, 2001, “Functionalized Self-Assembled Alkanethiol Monolayers on Au(111)Electrodes: 1. Surface Structure and Electrochemistry,” Langmuir, 17, pp.828-838.
[37]A. Kudelski, 2003, “Structures of monolayers formed from different HS-(CH2)2-X thiols on gold, silver and copper:comparative studies by surface-enhanced Raman scattering,” J. Raman Spectrose., 34, pp.853-862.
[38]B. Bhushan, in: B. Bhushan(Ed.), 2001, Modern Tribology Handbook, Materials, Coatings, and Industrial Applications, Vol. 2, CRC, Boca Raton, FL, P. pp.909.
[39]R. W. Carpick, and M. Salmeron, 1997, Chem. Rev. 97, pp.1163.
[40]Huiwen Liu, and Bharat Bhushan, 2002, “Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains (Invited),” Ultramicroscopy, pp.91.
[41]Nikhil S Tambe, and Bharat Bhushan, 2005, “Friction model for the velocity dependence of nanoscale friction,” Nanotechnology, 16, pp.2309-2324.
[42]Horng, J. H., and Chen, Y. C., 2005, “Three-Baby Microcontact Model and It`s Application on Wear,” International Conference on Advanced Manufacture, accepted.
[43]Davis, Shawn P., Landis, Benjamin J., Adams, Zachary H., Allen, Mark G., Prausnitz, and Mark R., 2004, “Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force,” Journal of Biomechanics, Vol.37, No.8, pp. 1155-1163.
[44]Biggs, S., and Spinks, G., 1998, “Atomic Force Microscopy Investigation of the Adhesion between a Single Polymer Sphere and a Flat Surface,” J. Adhes. Sci. Technol., Vol.12, No.5, pp. 461-478.
[45]Reitsma, M., Craig, V., and Biggs S., 2000, “Elasto-Plastic and Visco-Elastic Deformations of a Polymer Sphere Measured using Colloid Probe and Scanning Electron Microscopy,” J. Adhe. Adhes., Vol.20, No.6, pp.445-448.
[46]Derjaguin, B. V., Muller, V. M., and Toporov, Y. P., 1975, “Effect of Conact Deformation on the Adhesion of Elastic Solids,” J. Colloidal Interface Sci., Vol.53, pp.314-326.
[47]Johnson, K. J., Kendall, K., and Roberts, A. D., 1971, “Surface Energy and the Contact of Elastic Solids,” Proc. R. Soc. Lond., A324, pp.301-313.
[48]Tabor, D., 1977, “Surface Forces and Surface Interactions,” J. Colloidal Interface Sci., Vol.538, pp.2-13.
[49]Muller, V. M., Yushchenko, V. S., and Derjaguin, B. V., 1980, “On the influence of Molecular Forces on the Deformation of an Elastic Sphere and its Sticking to Rigid Plane,” J. Colloidal Interface Sci., Vol.77, pp.91-101.
[50]Chang, W. R., Etsion, I., and Bogy, D. B., 1988, “Adhesion Model for Metallic Rough Surfaces,” ASME Journal of Tribology, Vol. 110, pp.50-56.
[51]Maugis, D., 1996, “On the Contact and Adhesion of Rough Surfaces,” J. Adhesion Sci., and Tech., Vol.10, pp.161-175.
[52]Aral, F., Ando, D., and Fukuda, T. 1996, “Adhesion Force Reduction for Micro Manipulation Base o n Micro Physic,” Proc,IEEE/RJS Int. Conf. On Intelligent Robotics and Systems, pp. 354-359.
[53]Sahoo, P., and Roy Chowdhury, S. K., 2000, “A fractal analysis of Adhesion Friction between Rough Solids in Gentle Sliding,” Poc. Instn. Mech. Engrs., Vol.214, Part J, pp.583-594.
[54]Sahoo, P., and Roy Chowdhury, S. K., 2002, “A fractal analysis of Adhesive Wear at the Contact between Rough Solids,” Wear, Vol. 253, pp.924-934.
[55]Skinner, L. M., and Sambles, J. R., 1972, Aerosol Sci., Vol.3, pp. 199.
[56]Israelachvili, J. N. and Fisher, L. R., and Christenson, H. K., 1982, ‘‘Messurement of Adhesion and Short-Range Forces Between Molecularly Smooth Surfaces in Undersaturated Vapours and in Organic Liquids,’’ J. Colloid Interface, Sci., pp.55-69.
[57]Fisher, L. R., Gamble, R. A., and Middlehurst, J., 1981, Nature, Vol. 290, pp.575.
[58]Melrose, J. C., 1989, ‘‘Scaling procedures for capillary pressure data at low wetting-phase saturations,’’ Langmuir, Vol.5, pp. 241-250.
[59]Pietsch, W., and Rumpf, H., 1967, Chemie-Ing., Techn., Vol.39, pp. 885.
[60]Coelho, M. C., and Harnby, N., 1978, ‘‘Effect of Humidity on the from of Water Retention in a Power,’’ Powder Technology, Vol.20, No.2, pp.197-200.
[61]Coelho, M. C., and Harnby, N., 1978, ‘‘Moisture Bond in Ginpowers,’’ Powder Technology, Vol.20, No.2, pp.201-205.
[62]Fisher, L. R., and Israelachvili, J. N., 1981, Colloids Surf. A: Physicochem. Eng. Aspects, Vol.3, pp.303.
[63]Marmur, A., 1993, ‘‘Tip-Surface Capillary Interactions,’’ Langmuir, Vol.9, No.7, pp.1922-1926.
[64]De Lazzer, A., Dreyer, M., and Rath, H. J., 1999, ‘‘Particle-Surface Capillary Forces,’’ Langmuir, Vol.15, No.13, pp.4551-4559.
[65]Sirghi, L., Nakagiri, N., Sugisaki, K., Sugimura, H., and Takai, O., 2000, ‘‘Effect of Sample Topography on Adhesive Force in Atomic Force Spectroscopy Measurements in Air,’’ Langmuir, Vol.16, No. 20, pp.7796-7800.
[66]Quon, R. A., Ulman, A., and Vanderlick, T. K., 2000, ‘‘Impact of Humidity on Adhesion Between Rough Surfaces,’’ Langmuir, Vol. 16, No.23, pp.8912-8916.
[67]Rabinovich, Y. I., Adler, J. J., Esayanur, M. S., Ata, A., Singh, R. K. and Moudgil, B. M., 2002, “Capillary forces between surfaces with nanoscale roughness,” Advances in Colloid and Interface Science, Vol.96, No.1-3, pp.213-230.
[68]Adamson, A. W., 1967, Physical Chemistry of Surfaces, 2nd ed., Interscience Publishers, New York.
[69]E. A. Hauser, H. E. Edgerton, and W.B. Tucker, 1936, “The Application of The Hing-Speed Motion Picture Camera to the Research on the Surface Tension of Liquid,” J. Phys Chem, Vol.40, p.973.
[70]H. E. Edgerton, E. A. Hauser, and W.B. Tucker, 1937,”Studies in Drop Formation as Revealed by the High-Speed Motion Camera,” J. Phys Chem, Vol.41, p.1017.
[71]D. H. Peregrine, G. Shoker, and A. symon, 1990, “The Bifurcatin of Liquid Bridgess,” J. Fluid Mech, Vol.212, p.25.
[72]D. Y. Kwok, Ph. D. Thesis, 1998, “Contact Angle and Surface Energetics,” University of Toronto, Canada.
[73]簡儒文, 2002, “雙液滴撞擊液膜與界面張力之實驗初探,” 國立台灣大學應用力學研究所碩士論文。
[74]M. G. Cabezas, A. Bateni, J. M. Montanero, and A. W. Neumann, 2005, “A New Method of Image Processing in The Analysis of Axisymmetric Drop Shapes,” Colloids and Syrfoce A: Physicochem, Vol.255, pp.31-48.
[75]C. N. C. Lam, R. Wu, D. Li, M. L. Hair, and A. W. Neumann, 2002, ”Study of The Advancing and Receding Contact Angles:Liquid Sorption as a cause of Contact Angle Hysteresis,” Advances in Colloid and Interface Science, pp.169-191.
[76]D. Y. Kwok, C. J. Budziak, and A. W. Neumann, 1995, ”Measurements of static and Low Rate Dynamic Contact Angles by Means of an Automated Capillary Rise Technique,” Journal of Colloid and Interface Science 173, pp.143-150.
[77]D. Y. Kwok, R. Lin. M. Mui, and A. W. Neumann, 1996, “Low-Rate Dynamic and Static Contact Angles and The Determination of Solid Surface Tensions,” Physicochemical and Engineering Aspects, pp.63-77.
[78]Pharr, G. M., and Oliver, W.C., 1989, ”Nanoindentation of silver-relations between hardness and dislocation.structure,” Journal of Materials Research, pp.94-101.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李錫津(2000)。學校的課程管理。教師天地,108,4-7。
2. 吳清基(1999)。我國學校行政的政策新取向。學校行政,1,3-11。
3. 李子建(2003)。學校本位課程發展:理論與取向。課程與教學季刊,6(2),105-128。
4. 方德隆(2001)。學校本位課程發展的理論基礎。課程與教學季刊,4(2),1-24。
5. 陳清溪(2003)。從課程管理的理念談課程綱要的研修工作。研習資訊,20(5),44-48。
6. 許育健(2004a)。九年一貫課程國家層級課程管理之探討。課程與教學季刊,8(1),13-30。
7. 許朝信(2005)。學校層級課程管理成效--以一所國小為例。國民教育研究集刊,13,65-68。
8. 游家政(1999)。再造國民教育九年一貫課程的圖像--課程綱要的規劃構想與可能問題。教育資料與研究,26,4-18。
9. 曾燦金(1987)。美國學校本位管理發展之探究。國教月刊,43(5),21-29。
10. 曾榮華(2001)。以全面品質管理觀點提升學校本位課程發展品質。教育研究資訊,9(1),55-75。
11. 黃嘉雄(1999)。落實學校本位課程發展的行政領導策略。國民教育雙月刊,40(1)。
12. 黃嘉雄(2003)。課程管理的意義、策略與思維。國民教育,44(1),57-63。
13. 黃旭鈞(2004)。課程品質管理的理念與策略。教育研究月刊,123,81-96。
14. 張德銳(1996)。對「中小學學校之經營」之評論。教改通訊,19,9-12。
15. 張素貞(1998)。學校本位管理在小學之實施。教育資料與研究,22,16-18。