跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 15:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃志彬
研究生(外文):Chih-pin Huang
論文名稱:以脈衝式雷射沈積聚苯胺(PANI)與8-羥基喹啉鋁(Alq3)之薄膜特性研究
論文名稱(外文):Characterizations of Thin PANI and Alq3 Films Formed by Pulsed Laser Deposition
指導教授:何正榮
指導教授(外文):Jeng-Rong Ho
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:113
中文關鍵詞:薄膜沈積8-羥基喹啉鋁聚苯胺雷射濺鍍
外文關鍵詞:thin films depositionAlq3PANIPLD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
從1977年被發現以後,導電高分子就成為近三十多年來學界致力於研究與發展的一個課題,本研究採用之物理氣相沉積法-脈衝式雷射濺鍍法(Pulsed Laser deposition ,PLD)來製作有機分子薄膜,主要之目標為了解有機分子材料在低溫薄膜製程中,所產生之物性或化性變化。本研究使用的三種不同雷射波段分別為193 nm深紫外光、532 nm可見光,以及1064 nm近紅外光,所採用材料為導電性高分子聚苯胺(PANI)與導電性小分子8-羥基喹啉鋁(Alq3)。透過薄膜電性、薄膜表面性質、薄膜化學特性以及奈米尺度之機械性質探討其成膜特性,同時也比較基板的晶格配位對於薄膜特性之影響。結果顯示,不同波長雷射沈積後之薄膜分子量會有很大的差異性,從光譜圖上發現使用532 nm雷射可獲得較類似於原本塊材的靶材特性,而其他波段的雷射則會造成嚴重的特性改變,使用193 nm雷射則可以獲得到更強的奈米機械特性;此外,使用波長越短的雷射可以獲得到越佳的表面形貌;對於小分子而言,從光譜圖上發現經由PLD鍍膜後,薄膜的分子特性也有很大的改變,使用193 nm雷射不僅可獲得很強的機械特性,短波長之雷射亦可使薄膜表面較為平整。綜合而言,以PLD所形成的薄膜其電性因分子量的大改變而產生本質性的改變,而以短波長的193 nm雷射所得之薄膜則有良好之機械特性與表面平整度。
Driven by seeking for more easily processible polymers in optoelectronic devices and systems, conducting polymers, since discovered in 1977, have been being a promising research subject that attracts much attention. The main purpose of the present study is to characterize physical properties of thin polyaniline, PANI, and tris-(8-hydroxyquinoline) aluminum, Alq3, films grown by pulsed laser deposition (PLD) technique. Three particular light wavelengths, including short ultraviolet light at 193 nm, visible light at 532 nm, and near infrared light at 1064 nm, were employed for the deposition. The conductivity, surface morphology and mechanical properties of the thin PANI films on substrates of Si (100), Si (110), Si (111) and glass as well as thin Alq3 films on substrates of Si (100) and glass were presented. Results show that both the conductivity and molecular weights of the thin films grown by PLD are remarkably reduced when compared to their corresponding target materials. The film grown by the wavelength at 532 nm has relatively more favorable conductivity than the films grown by the wavelengths at 193 nm and 1064 nm and the shorter the light wavelength the better surface morphology was obtained. It was also found that an incredible hardness was obtained by a nanoindenter tester for both the PANI and Alq3 films grown by the light at 193 nm. In summary, the conductivity, surface morphology, and mechanical properties of the thin PANI and Alq3 films deposited by the PLD technique were fundamentally different from their corresponding properties at buck state because the molecular structures were dramatically changed due to the laser material interactions during the deposition process.
From 1977, conduct polymer became an important subject for the academic circle to study and develope. In this study, for the major purpose to understand the changes of physical and chemical properies in low-temperature thin film processing of organic, pulsed laser deposition (PLD) was used to produce the polymeric thim film.
Three kinds of lasers with different wavelengths, including 193nm UV light, 532nm visivle light and 1064nm near red light, and two types of polymer, conduct polymer PANI and small molecule A1Q3, were the main objects used in our study. The characters of thin films were discussed through electric, surface, chemical nano-scale mecanical properties. Furthermore, the influence for the match effect of the substrate's lattice was also investigated.
For polymer, different lasers produced huge variation of thin films' molecular weight. By means of the optical spectrum and electrical properties anaylsis, it's obvious to find that the molecular weight of thin films by 532nm laser are closed to the original target, others were on the contrary. For small molecule, as shorter as the wavelength, one could get a better surface character. Besides, utilizing 193nm laser, stronger mechanical characters could be measured.
In conclusion, no matter using optical spectrum or electrical properties anaylsis, we found that the characters of thin film produced by PLD have huge changes. In order to get high mechanical property, 193nm laser is the best choice. On the other hand, laser with shorter wavelength will produce a smoother surface topography.
中文摘要 i
英文摘要 ii
謝誌 iv
目錄 IV
圖目錄 VI
表目錄 IX
第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文架構 2
第二章 文獻回顧與研究重點 4
2.1 薄膜沉積之介紹 4
2.1.1 薄膜沉積的原理 4
2.1.2 薄膜之沉積技術 7
2.1.2.1 物理氣相沉積 7
2.1.2.2化學氣相沉積 8
2.1.3 高分子薄膜製程 10
2.2 雷射沉積(PLD)之原理、發展與應用 11
2.2.1 PLD之原理與設備架構 11
2.2.2 PLD之發展與歷史 12
2.2.3 PLD於有機物之應用 13
2.2.4 影響薄膜沉積的因素 16
2.3導電性高分子 17
2.3.1 導電高分子簡介 17
2.3.2 導電原理 19
2.4 聚苯胺薄膜之介紹與應用 21
2.4.1 聚苯胺的介紹與摻雜 21
2.4.2 聚苯胺薄膜之應用 24
2.5 8-羥基喹啉鋁(Alq3)之介紹與應用 25
2.5.1 8-羥基喹啉鋁(Alq3)之材料介紹和說明 25
2.5.2 8-羥基喹啉鋁(Alq3)之應用 27
2.6 本研究之承傳與創新 29
第三章 實驗架構、流程及量測原理 30
3.1 實驗設計 30
3.2 實驗架構 31
3.3 實驗流程 33
3.3.1 實驗藥品 34
3.3.2 實驗之儀器 34
3.3.4 靶材之製作 41
3.4 量測儀器及其原理 42
3.4.1 四點探針 42
3.4.2 紫外光/可見光吸收光譜 43
3.4.3 傅立葉轉換紅外光譜 44
3.4.4 掃瞄式電子顯微鏡(SEM) 45
3.4.5 原子力顯微鏡(AFM)與奈米壓痕之原理 45
第四章 結果與討論 49
4.1 高分子聚苯胺(PANI-CSA/PVC) 50
4.1.1 導電度與薄膜製程的關係 50
4.1.2 化學特性與薄膜製程的關係 52
4.1.2.1 紫外光光譜儀(UV-Vis) 52
4.1.2.2 傅立葉轉換紅外光光譜儀(FTIR) 55
4.1.2.3 凝膠滲透層析儀(GPC) 58
4.1.3 奈米尺度下之機械性質與薄膜製程之探討 60
4.1.4 薄膜表面形貌與薄膜製程之探討 63
4.1.4.1 電子顯微鏡(SEM)之分析與探討 64
4.1.4.2 原子力顯微鏡(AFM)之分析與探討 67
4.1.5 長時間放置後之現象 70
4.2 小分子8-羥基喹啉鋁(Alq3) 72
4.2.1導電度與薄膜製程的關係 72
4.2.2 化學特性與薄膜製程的關係 73
4.2.2.1 紫外光光譜儀(UV-Vis) 73
4.2.2.2 傅立葉轉換紅外光光譜儀(FTIR) 75
4.2.2.3 螢光光譜儀(PL) 78
4.2.3 奈米尺度下之機械性質與薄膜製程之探討 79
4.2.4 薄膜表面形貌與薄膜製程之探討 81
4.2.4.1 電子顯微鏡(SEM)之分析與探討 81
4.2.4.2 原子力顯微鏡(AFM)之分析與探討 82
第五章 結論與未來建議事項 85
5.1 結論 85
5.2 未來建議 87
參考文獻 88
附錄 93
[1]寧天恩,“以準分子雷射沉積聚苯胺薄膜之研究” 國立中正大學機電光整合工程研究所,民國93年
[2]歐明鑫,“聚苯胺之準分子雷射微成型研究” 國立中正大學機械工程研究所碩士論文,民國92年
[3]莊達人,“VLSI製造技術”,高立,2003
[4]L. Eckertova and T. Ruzicka, “Diagnostics and Applications of Thin Films”, Institute of Physics Publishing, 1993
[5]J. B. Hudson, “Surface Science”, Butterworth-Heinemann, 1992
[6]K. N. Tu, J. W. Mayer and L. C. Feldman, “Electronic Thin Film Science for Electrical Engineers and Materials Scientists”, Macmillan Publishing, 1992
[7]李世鴻,“積體電路製程技術”,五南圖書出版公司
[8]H. Biederman, and D. Slavínská, “Plasma polymer films and their future prospects”, Surface and Coatings Technology 125 (2000) 371-376
[9]Wolfgang Ehrfeld, “Electrochemistry and Microsystems”, Electrochimica Acta 48 (2003) 2857-2868
[10]Marie Jakoubková, Zdenêk Bastl, Radek Fajgar, and Josef Pola, “Laser induced chemical vapour deposition of polymeric films from thiophene”, Applied Surface Science 106 (1996) 67-69
[11]Hiroyasu Sato and Satoru Nishio, “Polymer laser photochemistry, ablation, reconstruction, and polymerization”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2 (2001) 139–152
[12]Yuxin Liu, Tianhong Cui, and Kody Varahramyan, “Fabrication and characteristics of polymeric thin-film capacitor”, Solid-State Electronics 47 (2003) 811-814
[13]R. V. Plank, Y. Wei, N. J. DiNardo, and J. M. Vohs, “Characterization of highly conducting, ultra-thin polyaniline films produced by evaporative deposition”, Chemical Physics Letters 263 (1996) 33-38
[14]J. Gonzalo, P. E. Dyer, and M. Hird, “Pulsed laser deposition of liquid crystals”, Appl. Phys. Lett. 71(19), 1997
[15]Douglas B. Chrisey and Graham K. Hubler, “Pulsed laser deposition of thin films.”, Naval Research Laboratory, 1994
[16]Tomi Smausz, Norbert Kresz, and Bela Hopp, “Target morphology dependence of the particulate generation during excimer laser ablation of polytetrafluoroethylene. ”,Applied Surface Science 177(2001)66~72
[17]R. Srinivasan, and V. Mayne-Banton, “Self-developing photoetching of poly(ethylene terephthalate) films by far-ultraviolet excimer laser radiation”, Appl. Phys. Lett. 41(576), 1982
[18]S. G. Hansen, and T. E. Robitaille, “Formation of polymer films by pulsed laser evaporation”, Appl. Phys. Lett. 52(81), 1988
[19]V. Myslik, M. Vrnata, F. Vyslouzul, M. Jelinek and M. Novotna, “Pulsed-Laser Deposition of Metaal Acetyl Actonates for sensor devices.”,Journal of applied polymer Science vol 74,1614~1622(1999)
[20]Masayuki Okoshi, Satoshi Higuchi, and Mitsugu Hanabusa “Fematosecond laser ablation of frozen acetane for deposition of diamond-like carbon films.”,Journal of applied physics vol 86 number 3 1999
[21]A. Pique, R. A. McGill, D. B. Chrisey, D. Leonhardt, T. E. Mslna, B. J. Spargo, J. H. Callahan, R. W. Vachet, R. Chung and M. A. Bucaro, “Growth of organic thin films by matrix assisted pulsed laser evaporateion (MAPLE) technique.”, Thin solid films 355~356 (1999)536-541
[22]Z. M. Ren, Y. F. Lu, Z. H. Mai, S. C. Ng, P. Miao, S. I. Pang, J. P. Wang and T. C. Chong,“Pulsed laser deposition of crystal polyaniline thin films”, Surface and Coatings Technology 125 (2000) 388-391
[23]P. Gonzalez, R. Soto, B. Leon, M. Perez-Amor and T. Szorenyi, “Pulsed laser deposition of A-CNx: H films: the role of target to substrate distance and laser fluence ”, Applied Surface Science 154-155(2000)454-457
[24]D. M. Bubb, J. S. Horwitz, R. A. McGill, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, and B. Toftmann, “Resonant infrared pulsed laser deposition of a sorbent chemoselective polymer”, Appl. Phys. Lett. 79(17), 2001
[25]J. Bulir, M. Novotny, M. Jelínek, J. Lancok, Z. Zelinger and M. Trchova, “Pulsed Laser deposition of CNx films the role of r.f, nitrogen plasma activation for the film structure formation. ”, Diamond and Related Materials 11(2002)1223~1226
[26]D.M.Bubb, B. Toftmanm, R. F. Haglund, J. s. Horwitz, N. R. Papantonalis, R. A. Mcgill, P. W. Wu and D. B. Chrisey “Resonant infrared pulsed Laser deposition of thin biodegradable polymer films. ”,Appl Phys, A 74,123-125(2002)
[27]Rudolf Frycek , Myslík Vladimir , Vrnata Martin , Vyslouzil Filip , Miroslav Jelinek and Josef Nahlík “Laser deposited thin organic and inorganic active layer for low temperature ozone sensor. ”, Sensor and Actuators B 98 (2004) 233~238
[28]H. Riascos, G. Zambrano, P. Prieto, A. Devia, H. Galindo, C. Power and J. González, “Characterization of fullerene-like CNx thin films deposited by Pulsed –Laser ablateon of graphite in nitrogen. ”, Phys. Stat. sol (a)201,No 10,2390~2393(2004)
[29]G. Kecskemeti, N. Kresz, T. Smausz, B. Hopp and A. Nogradi, “Pulsed Laser deposition of pepsin thin films. ”, Applied surface Science 247 (2005)83~88
[30]S. Yaginuma, J. Yamaguchi, K. Itaka and H. Koinuma, “Pulsed laser deposition of oxide gate dialectrics for pentacene organic field-effect transistors. ”,Thin solid films 486(2005)218~221
[31]Xiaoyan Zeng, Naoto Koshizaki, Takeshi Sasaki, Akira Yabe, Fabrice Rossignol, Hideaki Nagai, Yoshinori Nakata, Takeshi Okutani, and Masaaki Suzuki, “Effect of target modification on deposition rates of hexaphenyldisilane by laser ablation”, Applied Surface Science 140 1999 90–98
[32]Xinju Yang, Yongxin Tang, Ming Yu, and Qizong Qin, “Pulsed laser deposition of aluminum tris-8-hydroxyquinline thin flms”, Thin Solid Films 358 (2000) 187-190
[33]L.D. Wang and H.S. Kwok, “Pulsed laser deposition of organic thin flms”, Thin Solid Films 363 (2000) 58-60
[34]Jack Y. Josefowicza, Jamshid K. Avlyanovb, and Alan G. MacDiarmid, “Complete alignment of polyaniline monolayers on muscovite mica: epitaxial effects of a lattice-matched substrate”, Thin Solid Films 393 (2001) 186-192
[35]Masayuki Okoshi, Masaaki Kuramatsu, and Narumi Inoue, “Thin-film deposition by laser ablation of dimethylpolysiloxane”, Applied Surface Science 197-198 (2002) 772-776
[36]T. A. Skotheim, “Handbook of Conducting polymers”, New York 1986
[37]蕭景文,“Studies on Polyaniline-based Conductive Polymers”, 台灣大學化工所碩士論文 ,民國89年
[38]R. Farchioni, and G. Grosso,“Organic Electroni Materials”, Springer 2000
[39]Alan G. MacDiarmid, “Synthetic metals a novel role for organic polymer”, Current Applied physics 1(2001) 269-279
[40]E. R. Holland, S. J. Pomfret, P. N. Adams, L. Abell, A. P. Mokman, “Doping dependent transport properties of polyaniline-CSA film”, Synthetic Metals 84 (1997) 777-778
[41]P. Kiattibutr, L. Tarachiwin, L. Ruangchuay, A. Sirivat, J. Schwank, “Electrical conductivity responses of polyaniline films to SO2-N2 mixtures: effect of dopant type and doping level”, Reactive & Functional Polymers 53 (2002) 29–37
[42]Bin Chen, Tianhong Cui, Yi Liu and Kody Varahramyan, “All-polymer RC filter circuits fabricated with inkjet printing technology”, Solid-State Electronics 47(2003) 841–847
[43]Yi Liu, Tianhong Cui and Kody Varahramyan, “All-polymer capacitor fabricated with inkjet printing technique”, Solid -State Electronics 47(2003)1543–1548
[44]陳壽安,”導電高分子:新世代光電材料”,物理雙月刊(二十三卷二期)
[45]S. Koul, R. Chandra and S.K. Dhawan, “Conducting polyaniline composite for ESD and EMI at 101 GHz”, Polymer 41(2000) 9305–9310
[46]王國華, “The Applied Research on the EMI shielding on the Computer's Plastic housing with ICPs”,文化大學應用化學研究所碩士論文
[47]S. Takeda, “A new type of CO2 sensor built up with plasma polymerized polyaniline thin film”, Thin Solid Films 343-344 (1999), 313-316
[48]S. C. K. Misra, M. K. Ram, S. S. Pandey, B. D. Malhotra, and Subhas Chandra, “Vacuum-deposited metal/polyaniline Schottky device”, Appl. Phys. Lett. 61(10), 1992
[49]吳繼安,“8-8-羥基喹啉鋁鹽奈米晶成長機制及其熱處理研究”,國立清華大學材料工程系碩士論文, 93年7月
[50]L.S. Sapochak, A. Padmaperuma, N. Washton, F. Endrino, G. T. Schmett, J. Marshall, D. Fogarty, P. E. Burrows, and S. R. Forrest, “ Effects of Systematic Methyl Substitution of Metal (III) Tris(n-Methyl-8-Quinolinolato) Chelates on Material Properties for Optimum Electroluminescence Device Performance”. J. Am. Chem. Soc 123 ,6300 (2001)
[51]駱英梓 “基板溫度變化下AlQ3薄膜特性分析”.中原大學應用物理所碩士論文93年7月
[52]C. Hang, H.B. Chae, K.H. Lee, S.K. Ahn, C.K. Kim, T.W. Kim, N.I Cho, and S.O. Kim, “The possibility og pulsed laser deposition organic thin films for light-emitting diodes. ”.Thin solid films 409 (2002) 37~42
[53]C.W. Tang, and S.A. VanSlyke, “Organic electroluminescent diodes. ”.Appl. Phys. Lett. 51(12),21 sptember 1987
[54]N. Matsumotot, H. Shima, T.Fujii, and F. Kannari, “Organic electroluminescene cells based on thin films deposited by ultraviolet laser ablateon. ”.Appl. Phys. Lett. 71(17).27 october 1997
[55]L.D. Wang, and H.S. Kwok, “Pulsed Laser deposition of organic thin film. ”. Thin Solid Films 363(2000)58~60
[56]K. Oura, V. G. Lifshits, A.A. Saranin, A. V. Zotov, M. Katayama, “Surface Science. ”.Springer 2003
[57]James R. Durig,陳守一 譯,“紅外線光譜分析法在化學、生物和工業方面之應用. ”國立編譯館 ,民國85年
[58]陳洁,宋啟澤,“有機波譜分析”北京理工大學出版社 ,1996
[59]Bill George, Peter Mclntyre,翁瑞裕 譯, “紅外線光譜分析法”John Wiley&Snos 高立圖書有限公司 ,民國90年
[60]劉政良,“分子動力學運用於薄膜機械性質之計量與實驗”國立成奶j學碩士論文 ,民國93年
[61]林彥宏,“奈米壓痕之表面層效應與結構變化之探討”國立中正大學機械工程研究所碩士論文,民國94年
[62]宋心琦、周福添、劉劍波,“光化學”五南出版社,2004年
[63]S.P. Louh, and M.H. Hon, “Effects of acetylene addition on mechanical and dialectruc propertyes of amorphous carbon films”
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top