(3.236.6.6) 您好!臺灣時間:2021/04/23 22:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許彰麟
研究生(外文):Chang-lin Hsu
論文名稱:無鉛銲錫引腳熱循環應力分析與剪力推球實驗的建立
論文名稱(外文):Lead-free Solder Joint Thermal Cycle Stress Analysis and Ball Shear Testing Setup
指導教授:劉德騏
指導教授(外文):De-shin Liu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:81
中文關鍵詞:無鉛銲錫空洞BGAANSYSAnand modelCreep model剪力推球試驗
外文關鍵詞:Lead-free solderVoid defectBGAANSYSAnand modelCreep modelBall shear test
相關次數:
  • 被引用被引用:7
  • 點閱點閱:733
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:85
  • 收藏至我的研究室書目清單書目收藏:0
在無鉛銲錫封裝體中,以連接電訊的銲錫引腳最為重要。然而銲錫引腳會因輔助銲錫融化之助焊劑裂解及迴焊溫度曲線選擇不當而產生空洞缺陷,進而對封裝體之壽命產生顯著之影響。為了瞭解空洞對封裝體效能之影響,本文針對無鉛(Sn-Ag-Cu)銲錫Mini-BGA封裝體進行溫度循環實驗(-45°C~125°C),實驗試片則經過不同的迴焊溫度曲線,以驗證空洞生成並比較其封裝體之壽命。結果顯示含有空洞之封裝體壽命約比未含空洞之封裝體少15~20%。文中亦利用一般研究中所常用描述錫球行為之Anand model與Creep model參數,並將其代入有限元素軟體ANSYS中進行空洞對Mini-BGA封裝體受溫度循環之影響。模擬結果並顯示應力梯度變化最大發生於錫球上方邊角處,而裂紋將穿透空洞並迅速成長。
本文亦建立剪力推球試驗來量測實際的錫球與封裝基板接合強度。研究結果指出,錫球所受之剪切負載會隨推刀行進速率加快而呈線性增加。無鉛之Sn-3.0Ag-0.5Cu銲材所受之剪切負載又較Sn-7Zn-Al60ppm來得大。且銲墊開孔直徑較大,其剪切負載峰值亦較高。並建議理想的推刀高度應介於球高之15~20%。
The most important reliability issue of a electronic package is the lead-free solder joints interconnections. Voiding occurred in lead-free solder joint due to improper reflow temperature profile and unfit flux system is one of the major failure modes to reduce the solder joint reliability. In order to understand the effects of voids on the lead-free package performance, Mini-BGA packages with Sn-Ag-Cu solder are used to undergo the temperature cycling test (TCT, -45~125°C) with different IR-reflow peak temperatures to examine the void forming mechanism and compared life cycles. The testing results shown that the failure life of the package with voids is shorter than no void samples about 15~20% life cycles. We also use the parameters of the Anand model and Creep model to combine it with FEM software, ANSYS, to investigate the failure mechanism and the influences of the voids to the reliability of the package. Analysis results are shown that Maximum stress level always found at both upper corners and could linked in void forming a through crack path.
The ball shear test was used to measure the solder ball joint shear strength. Experimental results observed that the increasing shear speed, at fixed shear height, has the effect of increasing shear force. The shear forces of the Sn-3.0Ag-0.5Cu solder joints are higher than those of Sn-7Zn-Al60ppm solder joints for all conditions. Higher pad opening size which exhibits significantly higher shear force. The ideal solder ball shear test conditions were recommended to be the cases with ram height of 15~20% of the solder ball height.
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 文獻回顧 3
1-3-1 Voiding 3
1-3-2 Constitutive models 5
1-3-3 剪力推球實驗 7
1-3-4 文獻回顧總結 8
1-4 研究方法與流程 10
第二章 理論基礎 13
2-1 Anand model理論 13
2-2 Creep model理論 19
2-3 疲勞模型理論 23
第三章 BGA封裝體溫度循環實驗 28
3-1 實驗試片簡介 28
3-2 空洞之形成 30
3-3 溫度循環測試 33
3-4 實驗結果 37
第四章 有限元素模擬 42
4-1 有限元素模型與材料參數給定 42
4-2 有限元素模型驗證 50
4-3 模擬結果與討論 53
第五章 剪力推球實驗 64
5-1 實驗設備與架構 64
5-2 試片的製作 66
5-3 實驗方法與步驟 68
5-4 實驗結果與討論 70
第六章 結論與未來研究方向 75
6-1 結論 75
6-2 未來研究發展 76
參考文獻 78
[1] Banks, D. R., Burnette, T. E., Cho, Y.-C., DeMarco, W. T., and Mawer, A. J., “The effects of solder joint voiding on plastic ball grid array reliability,” in Proc. Surface Mount Int.'96 San Jose, Ca, Sept. 10–12, pp. 121-126, 1996.
[2] Lau, J. H., Erasmus, S., and Pan, S., “Effects of Voids on Bump Chip Carrier (BCC++) Solder Joint Reliability,” IEEE Proceedings of Electronic & Components Technology Conference, pp. 992-1000, 2002.
[3] Yunus, M., Srihari, K., Pitarresi, J. M., and Primavera, A., “Effect of voids on the reliability of BGA/CSP solder joints,” Microelectronics Reliability, v 43, pp. 2077-2086, 2003.
[4] Kim, D.-S., Yu, Q., Shibutani, T., Sadakata, N.,and Inoue, T., “Effect of void formation on thermal fatigue reliability of lead-free solder joints,” Thermomechanical Phenomena in Electronic Systems - Proceedings of the Intersociety Conference, v 2, ITherm 2004 - Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 325-329, 2004.
[5] 林柏寬,“助焊劑裂解產生之氣泡對無鉛錫球封裝體影響之研究”,國立中正大學機械工程研究所碩士論文,2004。
[6] Wang, G. Z., Cheng, Z. N., Becker, K., and Wilde, J., “Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys,” Journal of Electronic Packaging, vol. 123, pp. 247-253, 2001.
[7] Zahn, B. A., “Solder Joint Fatigue Life Model Methodology for 63Sn37Pb and 95.5Sn4Ag0.5Cu Materials,” Proceedings - Electronic Components and Technology Conference, pp. 83-94, 2003.
[8] Syed, A., “Accumulated Creep Strain and Energy Density Based Thermal Fatigue Life Prediction Models for SnAgCu Solder Joints,” Proceedings - Electronic Components and Technology Conference, pp. 737-746, 2004.
[9] Rodgers, B., Flood B., Punch, J., and Waldron, F., “Determination of the Anand Viscoplasticity Model constants for SnAgCu,” ASME Paper No. IPACK2005-73352, San Francisco, CA, July 2005.
[10] Huang, X., Ricky Lee, S. W., Yan, C. C., and Hui, S., “Characterization and analysis on the solder ball shear testing conditions,” IEEE Electronic Components and Technology Conference, Proceedings. 51st, pp. 1065-1071, 2001.
[11] Kim, J. W. and Jung, S. B., “Experimental and finite element analysis of the shear speed effects on the Sn-Ag and Sn-Ag-Cu BGA solder joints,” Materials Science and Engineering A, pp. 267-276, 2004.
[12] Kim, J. W. and Jung, S. B., “Optimization of shear test for flip chip solder bump using 3-dimensional computer simulation,” Microelectronic Engineering, pp. 554-560, 2005.
[13] Chia, J. Y. H., Cotterell, B., and Chai, T. C., “The mechanics of the solder ball shear test and the effect of shear rate,” Materials Science and Engineering A, pp.259-274, 2006.
[14] Schubert, A., Dudek, R., Auerswald, E., Gollhardt, A., Michel, B., and Reichi, H., “Fatigue Life Models of SnAgCu and SnPb Solder Joints Evaluated by Experiments and Simulation,” 53rd ECTC Conference Proc., pp. 603-610, 2003.
[15] Lau, J., Dauksher, W., and Vianco, P., “Acceleration Models, Constitutive Equations, and Reliability of Lead-Free Solders and Joints,” 53rd ECTC Conference Proc., pp. 229-236, 2003.
[16] Pang, J. H. L., Xiong, B. S. and Low, T. H., “Creep and Fatigue Characterization of Lead Free 95.5Sn-3.8Ag-0.7Cu Solder,” Proceedings, 54th Electronic Components and Technology Conference, Las Vegas, NV, June 1-4, pp. 1333-1337, 2004.
[17] Lau, J. H., Lee, R. S. W., Song, F., Shangguan, D., Lau, D. C., and Dauksher, W., “Thermal-Fatigue Life Prediction Equation for Plastic Ball Grid Array (PBGA) SnAgCu Lead-Free Solder Joints,” ASME Paper No.IPACK2005-73362, San Francisco, CA, July 2005.
[18] Lau, J. H., Lee, R., Dauksher, W., Shangguan, D., Song, F., and Lau, D., “A Systematic Approach for Determining the Thermal Fatigue-Life of Plastic Ball Grid Array (PBGA) Lead-Free Solder Joints,” ASME Paper No. IPACK2005-73364, San Francisco, CA, July 2005.
[19] Chong, D. Y. R., Goh, K. Y., Kapoor, R., and Sun, A. Y. S., “Reliability analyses for new improved high performance flip chip BGA packages,” IEEE Electronics Packaging Technology, 5th Conference, pp. 695-700, 2003.
[20] 林昌緒,“應用三維無限元素以分析陣列式封裝之熱變形”,國立中正大學機械工程研究所碩士論文,2001。
[21] Http://www.ablestik.com/datasheets/8355F.PDF
[22] Hong, B. Z. and Su, L. S., “On thermal stresses and reliability of a PBGA chip scale package,” IEEE Electronic Components and Technology Conference, 48th IEEE, pp. 503-510, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔