跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 00:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃英傑
研究生(外文):Ying-chieh Huang
論文名稱:極端指數修正後的極值理論風險值:八個新興市場的國際股價指數為例
論文名稱(外文):Value-at-risk: Applying the extreme value approach with extremal index to emerging markets
指導教授:何泰寬何泰寬引用關係
指導教授(外文):Tai-kuang Ho
學位類別:碩士
校院名稱:國立中正大學
系所名稱:國際經濟所
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:40
中文關鍵詞:極值理論GARCH-GEV模型回饋測試極端指數
外文關鍵詞:Extreme value theoryGARCH-GEV modelBacktestingExtremal index
相關次數:
  • 被引用被引用:0
  • 點閱點閱:305
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
近年釵h研究應用極值理論於風險值估計,但傳統極值理論假設序列之間為完全獨立,不符合現實社會中的情況。本研究希望利用極端指數修正極值理論的序列相關問題,以求得更準確的風險值。我們以八個新興市場的國際股價指數為樣本,利用回饋測試估算樣本外的預測風險值後與實際報酬率相較計算超限率,比較極值理論與不同模型績效。

研究結果顯示以極端指數修正極值理論後,極值理論風險值模型的績效表現比起未修正時要來的好;並且在高分量下的風險值績效表現,比動態極值理論的GARCH-GEV模型來的好。
Extreme value approach was broadly used to calculate value-at-risk recently. Traditional extreme value theory derived from independent process, but it is unrealistic, especially for financial asset returns. The purpose of this paper is to overcome this difficulty with extremal index that makes extreme value theory could derived from dependent process. Our sample includes daily stock indices of eight emerging markets over period 1993-2006. Using backtesting of historical return series, we compare performances of different methods.

The result shows that extreme value approach performs better with correction of extremal index. And compare to GARCH-GEV model of conditional extreme value theory, extreme value approach with extremal index performs better at high quantiles.
目錄
1 序論 1
1.1 研究動機………………………………………………………………….....1
1.2 研究目的.........................................................................................................2
1.3 研究架構.........................................................................................................2
2 文獻回顧 3
2.1 風險值.……………………………………………………………................3
2.2 研究不同風險值模型績效文獻.....................................................................4
3 理論探討 5
3.1 極值理論.……………………………………………………………............5
3.1.1 極值分配.……………………………………………………….......6
3.1.2 極值參數估計....................................................................................7
3.1.2.1 有母數法.............................................................................8
3.1.2.2 無母數法...........................................................................10
3.2 極端指數. .……………………………………………………………........11
3.2.1 雙門檻波動指數.……………………………………………….....13
3.2.2 雙門檻波動指數估計.………………………………………….....14
4 研究方法 15
4.1 極值理論風險值.………………………………………………………......15
4.2 估計極值參數.……………………………………………………………..16
4.3 估計極端指數.……………………………………………………………..17
4.4 回饋測試.……………………………………………………………..........17
4.5 其他估計風險值模型.…………………………………………………......18
4.5.1 變異數-共變異數法.………………………………………….....18
4.5.2 歷史模擬法.…………………………………………………….....18
4.5.3 GARCH-GEV法.……………………………………………….....19
5 實證結果與分析 20
5.1 資料來源與敘述統計.…………………………………………………......20
5.2 極值參數估計.……………………………………………………………..21
5.3 極端指數估計值.…………………………………………………………..22
5.4 回饋測試.……………………………………………………………..........23
5.4.1 極端指數修正後的GEV模型績效.…………………………….....23
5.4.2 修正後的GEV 模型與GARCH-GEV 模型比較.………….....25
6 結論 27
參考文獻 29



圖表目錄
表一:八個新興市場股價指數日報酬率敘述統計....................................................32
表二:極值分配參數估計值........................................................................................33
表三:三種門檻下的極端指數....................................................................................34
表四:未做修正的GEV與三種模型績效比較...........................................................35
表五:95%門檻值下的GEV與三種模型績效比較...................................................35
表六:90%門檻值下的GEV與三種模型績效比較...................................................36
表七:85%門檻值下的GEV與三種模型績效比較...................................................36
表八:95%門檻值下的GEV與GARCH-GEV模型績效比較...................................37
表九:90%門檻值下的GEV與GARCH-GEV模型績效比較...................................37
表十:85%門檻值下的GEV與GARCH-GEV模型績效比較...................................38
圖一:區段樣本極大值QQ-plot..................................................................................39
圖二:區段樣本極小值QQ-plot..................................................................................40
莊益源、林文昌、徐嘉彬與邱臙珍,2003,「靜態與動態風險值模型績效之比較」,証券市場發展季刊,第15卷,第4期,107-159頁。
Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics, 31, 307-327.
Bystrm, H. (2004), “Managing Extreme Risks in Tranquil and Volatile Markets Using Conditional Extreme Value Theory.” International Review of Financial Analysis, 13, 133-152.
Coles, S. G. (2001), “An Introduction to Statistical Modelling of Extreme Values.” London: Springer-Verlag.
Cox, D. R., and Hinkley, D. V. (1974), “Theoretical Statistics.” London: Chapman and Hall.
Danielsson, J. and C. de Vries (1997), “Tail Index and Quantile Estimation with Very High Frequency Data.” Journal of Empirical Finance, 4, 241-257.
Danielsson, J. and C. de Vries (2000), “Value-at-Risk and Extreme Returns.” Extremes and Intergrated Risk Management, Risk Books, Chapter 8, 85-106.
Dekkers, A. L. M., and De Haan, L. (1989), “On the Estimation of Extreme Value Index and Large Quantile Estimation.” Annals of Statistics, 17, 1795-1832.
Embrechts, P., C. Klppelberg, and T. Mikosch (1997), “Modelling Extremal Events: for Insurance and Finance.” Heidelberg: Springer-Verlag.
Engle, R. F. (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation.” Econometrica, 50, 987-1007.
Fisher, R. A. and Tippett, L. H. C. (1928), “Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample.” Proceeding of Cambridge Philosophical Society, 24, 180-190.
Genay, R. and Seluk, F. (2004), “Extreme Value Theory and Value-at-Risk: Relative Performance in Emerging Markets.” International Journal of Forecasting, 20, 287-303.
Gnedenko, B. V. (1943), “Sur La Distribution Limite Du Terme Maximum of D’une Srie Alatorie.” Annals of Mathematics, 44, 423–453.
Goldie, C. M., and Smith, R. L. (1987), “Slow Variation with Remainder: Theory and Applications.” Quarterly Journal of Mathematics, Oxford 2nd Series, 38, 45-71.
Gumbel, E. J. (1958), “Statistics of Extremes.” New York: Columbia University Press.
Hill, B. M. (1975), “A Simple General Approach to Inference About the Tail of a Distribution.” Annals of Statistics, 3, 1163-1173.
Ho, L., P. Burridge, J. Cadle, and M. Theobald (2000), “Value at Risk: Applying the Extreme Value Approach to Asian Markets in the Recent Financial Turmoil.” Pacific-Basin Finance Journal, 8, 249-275.
Jansen, D. W., and De Vries, C. G. (1991), “On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspectives.” Review of Economics and Statistics, 73, 18-24.
Laurini, F. (2004), “Cluster of Extreme Observations and Extremal Index Estimate in GARCH Process.” Studies in Nonlinear Dynamics & Econometrics, 8 (2) , Article 4.
Laurini, F., and J. A. Tawn (2003), “New Estimators for the Extremal Index and Other Cluster Characteristics.” Extremes, 6, 189-211.
Leadbetter, M. R., G. Lindgren, and H. Rootzn (1983), “Extremes and Related Properties of Random Sequence and Processes.” New York: Springer-Verlag.
Longin F. (2000), “From value at risk to stress testing: The extreme value approach.” Journal of Banking & Finance, 24, 1097-1130.
McNeil, A. and R. Frey (2000), “Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach.” Journal of Empirical Finance, 7, 271-300.
O'Brien, G. L. (1987), “Extreme Values for Stationary and Markov Sequence.” The Annals of Probability, 15, 281-289.
Pickands, J. (1975), “Statistical Inference Using Extreme Order Statistics.” Annals of Statistics, 3, 119-131
Smith, R. (1985), “Maximum Likelihood Estimation in a Class of Non-regular Cases.” Biometrika, 72, 67-90.
Tsay, R. S. (2001), “Extreme Values, Quantile Estimation and Value at Risk.” Analysis of Financial Time Series, Chapter 7, John Wiley and Sons, Inc.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top