|
[1] Bartlett, M. S. (1966). An introduction to Stochastic Processes. University Press, Cambridge. [2] Besag, J. E. (1972). Nearest-Neighbor Systems and the Auto-Logistic Model for Binary Data. Journal of Royal Statistical Society B 34, 75-83 [3] Besag, J. E. (1974). Spatial Interaction and the Statistical Analysis of Lattice Systems(with discussion). Journal of Royal Statistical Society B 36, 192-236. [4] Besag, J. E. (1975). Statistical Analysis of Non-Lattice Data. The statistician 24, 179-195. [5] Besag, J. E. (1986). On the Statistical Analysis of Dirty Pictures (with discussion). Journal of Royal Statistical Society B 48, 259-302. [6] Brook, S. P. (1998). Quantitative Convergence Diagnosis for MCMC via CUSUMS. Statistics and Computing 8, 267-274. [7] Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York. [8] Geman, D. and Geman, S. (1984). Stochastic relaxation,Gibbs distribu- tions,and the Bayesian reconstruction of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721-741. [9] Geyer, C. J. (1992). Practical Markov chain Monte Carlo (with discussion). Statistical Science 7(4), 473-511. [10] Gidas, B. (1993). Parameter Estimation for Gibbs Distribution from Fully Observed Data. Markov Random Fields, Academic Press. [11] Goulard, M. Sarkka, A. and Grabarnik, P. (1996). Parameter Estimation for Marked Gibbs Point Processes through the Maximum Pseudolikelihood Method, Scandinavian Journal of Statistic 23, 365-379. [12] Guyon, X. (1995). Random Fields on a Network: Modeling, Statistics and Applications. Springer, New York. [13] Huffer, F. W. and Wu, H. (1997). Modeling the distribution of plant species using the autologistic regression model. Environmental and Ecological Statistics 4, 49-64. [14] Huffer, F.W. andWu, H. (1998).Markov ChainMonte Carlo for Autologistic Regression Models with Application to the Distribution of Plant Species. Biometrics 54, 509-524. [15] Jensen, J. L. and MøLLer, J. (1991). Pseudolikelihood for Exponential Family Models of Spatial Point processes. The Annals of Applied Probability 1, 445-461. [16] Lin, P. S. and Huang, Y. W. (2006). Applications of Pseudo-likelihood Estimation on Binary Markov Random Fields. Journal of the Chinese Statistical Association 44, 91-107.
|