跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 06:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡欣男
研究生(外文):Hsin-nan Tsai
論文名稱(外文):A Strict Interval Estimation for Percentage with Empirical Comparisons.
指導教授:高正雄高正雄引用關係
學位類別:碩士
校院名稱:國立中正大學
系所名稱:統計科學所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:31
外文關鍵詞:PercentageCLTHigh momentsChebyshev's inequality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
The obtained confidence interval from using Central Limit
Theorem (CLT) is an approximate solution. On the other hand, the
confidence interval obtained by using Chebyshev's inequality is
strict but crude. In this work, we provide a new method that leads
us to a strict confidence interval which is close to the outcome
from using CLT. We primarily study interval estimation for
percentage. We apply Edgeworth expansion and Berry-Esseen
inequality to modify the results of using CLT for purpose of doing comparison.
We also apply the new method to obtain a strict solution instead of an approximate solution regarding population percentage p.
Contents
1 Introduction 4
2 The 2Kth moment method for strict confidence intervals 6
3 Use the 2Kth moment method in Bernoulli Distribution 12
4 Discussion on outcome of the new method on percentage
estimation 14
5 Comparison on the outcomes from using the new method,
CLT, and Chebyshev's inequality 17
6 Modified methods related to Edgeworth expansion and Berry-Esseen inequality 19
6.1 Method with use of Edgeworth expansion . . . . . . . . . . . . 19
6.2 Method with use of Berry-Esseen inequality . . . . . . . . . . 23
7 Appendix 25
7.1 Lyapunov's inequality . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 R Code for Figure 1 . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 R Code for Figure 2 . . . . . . . . . . . . . . . . . . . . . . . 26
7.4 R Code for Figure 3 . . . . . . . . . . . . . . . . . . . . . . . 28
8 Conclusion 30
Reference 31
References
Bickel, P., and Doksum, K. (2001) Mathematical Statistics, Prentice
Hall, Upper Saddle River, New Jersey.
Brown, L., Cai, T., and Dasgupta, A. (2001) Interval estimators for a
binomial proportion. Statistical Science 16, 101-133.
Maboukian, E. (1985) Modern Concepts and Theorems of Mathematical
Statistics, Springer-Verlag, New York Berlin Heidelberg Tokyo.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top