(3.238.174.50) 您好!臺灣時間:2021/04/17 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂慈純
研究生(外文):Tzu-Chuen Lu
論文名稱:資訊隱藏技術之研究
論文名稱(外文):The Study of Information Hiding Mechanisms
指導教授:張真誠張真誠引用關係
指導教授(外文):Chin-Chen Chang
學位類別:博士
校院名稱:國立中正大學
系所名稱:資訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:173
中文關鍵詞:差異擴張無失真壓縮量化技術轉換樹編碼法邊緣吻合向量量化編碼法基因序列數位浮水印奇異值分解可反轉資訊隱藏資訊隱藏
外文關鍵詞:Lossless CompressionSMVQSingular Value DecompositionSVDReversible Information HidingQuantization-basedSwitching Tree CodingSide-match Vector QuantizationDifference ExpansionDNA SequenceInformatoin Hiding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:460
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
「資訊隱藏」是將機密資訊藏入多媒體數位產物,如影像、圖形、文字、音訊、影片等的一項機制,由於資訊藏入後並不會改變原本多媒體的特性,使得不法者無法察覺到有訊息藏在其中,如此即可達到秘密通訊的目的。由於資訊隱藏的重要性及實用性,使得資訊隱藏成為相當熱門的研究領域,並且有釵h有趣的延伸、變形及應用,如影像認證、著作權保護、存取權管制、資訊註解、浮水印等。其中浮水印(Watermarking)是資訊隱藏技術研究領域的一個重要分支,它將密文(Ciphertext)或商標(Watermark),以人眼無法偵測的方式潛藏在隱蔽物中形成偽裝隱蔽物。當隱蔽物的所有權發生爭議,或懷疑隱蔽物遭到破壞時,即可將藏入的商標或密文從偽裝隱蔽物中取出,以驗證隱蔽物的所有權歸屬,或指出被篡改的地方。因為浮水印的特性,使得浮水印技術被大量使用在智慧財產權保護、偽造篡改偵測、所有權宣示、及影像驗證上。過去針對影像驗證所提出的方法,大部分都無法抵禦失真壓縮,如JPEG的攻擊,因此一些學者提出以浮水印為基礎的影像驗證方法,用以抵禦JPEG攻擊。然而,過去提出的方法,有些需要原始的隱蔽物才能解出密文,有些則是會讓偽裝隱蔽物的影像品質大打折扣。因此本論文提出一個以奇異值分解(Singular Value Decomposition; SVD)技術為基礎的浮水印影像驗證技術,此方法不但可以正確的偵測到影像被篡改的地方,並且可以抵禦不同類型的攻擊,此外,偽裝隱蔽物的影像品質也不會受到太大影響。
資料隱藏技術主要追求的目標為:資訊藏量(Payload)要大、偽裝隱蔽物的影像品質不可太差、藏入資訊不可被偵測出來。然而,資訊藏量與偽裝隱蔽物影像品質是很難取捨的問題,當要求資訊藏量大時,偽裝隱蔽物的影像品質一定會受到很大的影響,因此如何在資訊藏量與影像品質中取得一個平衡,一直是學者們努力的目標。本論文提出一個能夠藏入大量資訊的以量化技術為基礎的資訊隱藏技術。該項技術在將藏入的資訊從偽裝隱蔽物中取出後,會將偽裝隱蔽物做回復的動作,使得回復後的隱蔽物與原始隱蔽物品質差不多。
然而,回復後的隱蔽物與原始隱蔽物仍然有些微的差距。因此,本論文採用另一項技術:可反轉資訊隱藏(Reversible Information Hiding)來解決這項問題。可反轉資訊隱藏使得偽裝隱蔽物在資訊取出後,能夠回復到它原始的面貌。本論文考量影像的特性,即相鄰像素(Pixels)的像素值會非常相近,提出一個可反轉資訊隱藏方法,本方法不但允酗@張影像能夠藏入大量資訊,並且在資訊取出後,還能夠回復到它原始的狀態。
然而,當多媒體資訊在網路上傳遞時,通常會先經過失真或無失真壓縮手續,以減少傳輸的時間及多媒體的儲存空間。這樣的壓縮和解壓縮程序,卻會破壞藏在偽裝隱蔽物中的資訊。因此,本論文提出二個在壓縮碼上面藏資訊的可反轉資訊隱藏技術。第一項技術是針對轉換樹編碼法(Switching Tree Coding; STC)提出的,第二項技術則是針對邊緣吻合向量量化編碼法(Side-match Vector Quantization ; SMVQ)所提出的。這二項技術都予釵b壓縮碼上面藏入大量資料,當資訊從壓縮碼中被取出後,壓縮碼還是能夠回復到原始狀態,透過解壓縮程序取得影像。
隨著人類基因圖譜定序工作的完成,帶動了基因相關研究的快速發展,目前研究的重心已由基因定序轉為基因序列的解讀及應用,基因序列資訊隱藏也成為一個有趣及有潛力的新興研究題目。一些學者試著在沒有被轉錄的DNA序列,或尚未被轉譯的RNA 區域上,以置換的方式將資訊藏到基因序列中。這樣的作法雖然簡單,但是卻有可能造成某些未知的基因,因為基因元被置換掉,使得未來在轉錄及轉譯成蛋白質時發生問題。因此,本論文將可反轉資訊隱藏概念帶入基因序列中,發展出二個以無失真壓縮(Lossless Compression) 及差異擴張(Difference Expansion) 為基礎的基因序列資訊隱藏技術。本項技術是一個新的研究開端,未來若能將生物資訊及電腦工程做結合,針對基因序列特性進行分析,發展出能夠藏入大量資訊的資訊隱藏技術,將為相關領域提供更為廣闊的研究方向。
Information hiding is a scheme that embeds secret data in digital media, such as digital images, video, audio, and so on, for use in a variety of applications, including fragile authentication, ownership protection, access control, secret sharing, and metadata embedding, and annotation. The information hiding topic has been an active research issue for several decades. Watermarking is one application of information hiding that is used for intellectual property right, forgery detection, or authorship inference, especially for multimedia authentication. Watermarking hides an invisible ciphertext or watermark in a host medium without changing the meaning of the content. Many authentication methods have been proposed for image authentication. However, most of them cannot resist lossy compression, such as JPEG compression, which is commonly used in digital processing. Some of the watermarked-based authentication schemes need the original cover medium to obtain the authentication information. In addition, the content-based authentication schemes might decrease the visual quality of the stego-medium when the authentic information is embedded in the cover medium. Therefore, in this dissertation, we shall propose a watermarking-based image authentication scheme that can detect correctly tampered locations and resist several types of attacks. Another popular application of information hiding is steganography, which conceals information in images for sharing secrets and for communication. In a steganography system, a sender embeds a secret message in a media and sends it to the receiver. In such a way, no one except for the intended receiver knows that a message has been concealed in the medium. Over the past decade, many techniques have been proposed for hiding information. However, most of them suffer from the problem of trade-off between payload and image distortion. For this problem, we shall design an information-hiding scheme that can hide a large amount of information in a host image with little distortion.
Reversible information hiding is another approach to solve the trade-off problem. The reversible information hiding techniques remove the embedded data from the setgo-medium such that the setgo-medium can be recovered to its original appearance. This dissertation considers the characteristic of multimedia to propose a reversible information hiding techniques. The scheme can conceal large amount of secret data in a host image and recover the host medium completely.
However, in order to reduce the bandwidth of Internet and to speed up the transmission time, multimedia files are usually compressed to make its storage size smaller. When the stego-multimedia is lossy compressed, the embedded message in the stego-multimedia might be erased. For this reason, we proposed two index-domain reversible hiding schemes to conceal the secrete data in the compressed results of images. The compression techniques used in this dissertation are switching tree coding (STC) and side-match VQ (SMVQ). The proposed hiding techniques can be applied to ensure the image quality of the decoded image. Recently, hiding secret data in DNA becomes an important and interesting research topic. Some researchers hid data in non-transcribed DNA, non-translated RNA regions, or active coding segments. Unfortunately, these schemes either alter the functionalities or modify the original DNA sequences. As a result, how to embed the secret data into the DNA sequence without altering the functionalities and to have the original DNA sequence be able to be retrieved is worthy of investigating. This dissertation apply two reversible information hiding schemes on DNA sequence by using the difference expansion technique and lossless compression. The reversible property makes the secret data hidden in anywhere in DNA without altering the functionalities because the original DNA sequence can be recovered in our schemes.
中文摘要 I
Abstract III
List of Tables VII
List of Figures IX
1 Introduction 12
1.1 Research Motivation 12
1.2 Research Score and Objective 16
1.3 Organization 18
2 Related Works 19
2.1 Data Compression 19
2.1.1 Vector Quantization (VQ) 19
2.1.2 Search-order Coding (SOC) 20
2.1.3 Switching Tree Coding (STC) 22
2.2 Information Hiding 23
2.3 Image Authentication 26
2.4 Index-domain Information Hiding 28
2.5 Reversible Information Hiding 32
3 A Content-based Image Authentication Scheme Based on Singular Value Decomposition 38
3.1 The Proposed Method 39
3.2 Block-based Feature Extraction 39
3.2.1 Feature Insertion 43
3.2.2 Image Verification 46
3.3 Experiments and Results 48
4 An Information-Hiding Scheme Based on Quantization-based Embedding Technique 60
4.1 The Proposed Scheme 61
4.1.1 The Hiding Process 61
4.1.2 An Example of Hiding Information 63
4.1.3 The Extraction Process 65
4.1.4 An Example of Extracting Information 66
4.2 Experiments and Results 67
5 A Difference Expansion Oriented Data Hiding Scheme for Restoring the Original Host Images 73
5.1 The Proposed Scheme 73
5.1.1 The Embedding Process 75
5.1.2 The Restoring Process 81
5.1.3 The Lossless Compression Mechanism 86
5.2 Experimental Results and Performance Evaluation 86
5.2.1 Capacity-Distortion Performance of the Proposed Scheme 88
5.2.2 Comparison with Tian’s Scheme and Celik’s Scheme 91
5.2.3 Comparison with Alattar’s scheme 95
6 A Secret Information Hiding Scheme Based on Switching Tree Coding 97
6.1 The Proposed Method 97
6.1.1 Encoder of IHSTC 98
6.1.2 An Example of Compression and Hiding 101
6.1.3 Decoder of IHSTC 103
6.1.4 An Example of Decompression and Extracting 104
6.2 Experiments and Results 106
6.2.1 Notation Definition 106
6.2.2 The Experimental Results 107
6.2.3 Some Observations 108
7 Reversible Index-domain Information Hiding Scheme Based on Side-match Vector Quantization 113
7.1 The Proposed Scheme 114
7.1.1 The Embedding Phase 114
7.1.2 An Example of Hiding Information 118
7.1.3 The Extraction Phase 122
7.2 Experiments and Results 124
7.2.1 Performance of the Proposed Scheme 125
7.2.2 Capacity-Distortion Comparison with Jo and Kim’s Scheme and Chang and Wu’s Scheme 133
8 Biology-based Reversible Data Hiding Schemes 135
8.1 Preliminaries 135
8.2 The Reversible Data Hiding Schemes 138
8.2.1 The Type-I Reversible Data Hiding Scheme 139
8.2.2 The Type-II Reversible Data Hiding Scheme 141
8.3 Experiments and Results 146
9 Conclusions and Future Works 152
References 156
Appendix 168
[1] Walton, S., “Image Authentication for a Slippery New Age,” Dr. Dobb's Journal, pp. 18-26, 1995.
[2]Tirkel, T., Osborne, C., and Schyndel, R., “Image Watermarking - a Spread Spectrum Application,” Proceedings of IEEE International Symposium on Spread Spectrum Techniques and Applications, Mainz, Germany, Vol. 2, pp. 785-789, 1996.
[3]Wang, R. Z., Lin, C. F., and Lin, J. C., “Image Hiding by Optimal LSB Substitution and Genetic Algorithm,” Pattern Recognition, Vol. 34, No. 3, pp. 671-683, 2001.
[4]Wong, P. W. and Memon, N., “Secret and Public Key Image Watermarking Schemes for Image Authentication and Ownership Verification,” IEEE Transactions on Image Processing, Vol. 10, pp. 1593-1601, 2001.
[5]Swanson, M. D., Zhu, B., and Tewfik, A. H., “Transparent Robust Image Watermarking,” Proceedings of SPIE Conference on Visual Communications and Image Processing, Vol. III, pp. 211-214, 1996.
[6] Lin, E. T. and Delp, E. J., “A Review of Fragile Image Watermarks,” Proceedings of the Multimedia and Security Workshop Multimedia Contents, Orlando, FL, pp. 25-29, 1999.
[7] Kundur, D. and Hatzinakos, D., “Digital Watermarking for Telltale Tamper-Proofing and Authentication,” Proceedings of the IEEE Special Issue on Identification and Protection of Multimedia Information, Vol. 87, No. 7, pp. 1167-1180, 1999.
[8] Lin, C. Y. and Chang, S. F., “A Robust Image Authentication Method Distinguishing JPEG Compression from Malicious Manipulation,” IEEE Transactions on Circuits System and Video Technology, Vol. 11, No. 2, pp. 153-168, 2001.
[9]Wu, M. and Liu, B., “Watermarking for Image Authentication,” Proceedings of IEEE International Conference on Image Processing, Chicago, Vol. 2, pp. 437-441, 1998.
[10] Bhattacharjee, S. and Kutter, M., “Compression Tolerant Image Authentication,” Proceedings of IEEE International Conference on Image Processing, Chicago, Vol. 1, pp. 435-439, 1998.
[11]Dittmann, J. Steinmetz, A., and Steinmetz, R., “Content-based Digital Signature for Motion Pictures Authentication and Content-fragile Watermarking,” Proceedings of IEEE Multimedia Systems, Multimedia Computing and Systems, Florence, Italy, Vol. 1, pp. 574-579, 1999.
[12]Lu, C. S., Sze, C. J. and Liao, H. Y., “Cocktail Watermarking for Digital Image Protection,” IEEE Transactions on Multimedia, Vol. 2, No. 4, pp. 209-224, 2000.
[13]Fabien, A. P., Anderson, R. J. and Kuhn, M. G., “Information Hiding - A Survey,” Proceedings of the IEEE Special Issue on Protection of Multimedia Content, Vol. 87, No. 7, pp. 1062-1078, 1999.
[14]Huang, J. and Shi, Y. Q., “Reliable Information Bit Hiding,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 12, No. 10, pp. 916-920, 2002.
[15]Chang, C. C., Hsiao, J. Y., and Chan, C. S., “Finding Optimal Least-significant-bit Substitution in Image Hiding by Dynamic Programming Strategy,” Pattern Recognition, Vol. 36, pp. 1583-1595, 2003.
[16]Cox, I., Kilian, J., Leighton, F., and Shamoon, T., “Secure Spread Spectrum Watermarking for Multimedia,” IEEE Transactions on Image Processing, Vol. 6, No. 12, pp. 1673-1687, 1997.
[17]Huang, H. C., Wang, F. H., and Pan, J. S., “A VQ-based Robust Multi-watermarking Algorithm,” IEICE Transactions on Fundamentals, Vol. 85-A, No. 7, pp. 1719–1726, 2002.
[18]Honsinger, C. W., Jones, P. W., Rabbani, M., and Stoffel, J. C., “Lossless Recovery of an Original Image Containing Embedded Data,” US Patent Application, 6,278,791, 2001.
[19]Tian, J., “Reversible Data Embedding and Content Authentication Using Difference Expansion,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 8, pp. 831-841, 2003.
[20]Vleeschouwer, C. D., Delaigle, J. F., and Macq, B., “Circular Interpretation of Bijective Transformation in Lossless Watermarking for Media Asset Management,” IEEE Transactions on Multimedia, Vol. 5, No. 1, pp. 97-105, 2003.
[21]Chang, C. C., Chen, G. M., and Lin, M. H., “Information Hiding Based on Search-order Coding for VQ Indices,” Pattern Recognition Letters, Vol. 25, No. 11, pp. 1253-1261, 2004.
[22]Hwang, J. J., “Digital Image Watermarking Employing Codebook in Vector Quantisation,” Electronic Letters, Vol. 39, No. 1, pp. 840-841, 2003.
[23]Lu, Z. M. and Sun, S. H., “Digital Image Watermarking Technique Based on Vector Quantisation,” Electronic Letters, Vol. 36, No. 4, pp. 303-305, 2000.
[24]Huang, H. C., Wang, F. H., and Pan, J. S., “Efficient and Robust Watermarking Algorithm with Vector Quantisation,” Electronic Letters, Vol. 37, No. 13, pp. 826-828, 2001.
[25]Jo, M. and Kim, H., “A Digital Image Watermarking Scheme Based on Vector Quantisation,” IEICE Transactions on Information & System, Vol. E85-D, pp. 1054–1056, 2002,
[26]Linde, Y., Buzo, A., and Gray, R. M., “An Algorithm for Vector Quantizer Design,” IEEE Transactions on Communications, Vol. 28, No. 1, pp. 84-95, 1980.
[27]Kim, T. “Side Match and Overlap Match Vector Quantizers for Images,” IEEE Transactions on Image Processing, Vol. 1, pp. 170-185, 1992.
[28]Chang, C. C. and Wu, W. C., “A Steganographic Method for Hiding Secret Data Using Side Match Vector Quantization,” IEICE Transactions on Information and Systems, Vol. E88-D, No. 9, pp. 2159-2167, 2005.
[29]Leier, A., Richter, C. Banzhaf, W., and Rauhe, H, “Cryptography with DNA Binary Strands,” BioSystems, Vol. 57, pp. 13-22, 2000.
[30]“Data Encryption Standard,” NIST FIPS PUB 46-3, October 25, 1999.
[31]Hwang, R. J. and Chang, C. C., “Hiding a Picture in Two Pictures,” Optical Engineering. Vol. 40, No. 3, pp. 342-351, 2001.
[32]Lin, M. H., Hu, Y. C., and Chang, C. C., “Both Color and Gray Scale Secret Images Hiding in a Color Image, “ International Journal on Pattern Recognition and Artificial Intelligence, Vol. 16, No. 6, pp. 697-713, 2002.
[33]Rivest, R.L., Shamir, A., and Adelman, L., “A Method for Obtaining Digital Signature and Public Key Cryptosystem,” Communications of the ACM, Vol. 21, No. 2, February 1978, pp. 120-126.
[34]Peterson, I., “Hiding in DNA,” Muse, p. 22, 2001.
[35]Shimanovsky, B., Feng, J., and Potkonjak, M., “Hiding Data in DNA,” Revised Papers from the 5th International Workshop on Information Hiding, Lecture Notes in Computer Science, Vol. 2578, Springer-Verlag, London, UK, pp. 373-386, 2002.
[36]The DNA sequences are downloaded from the NCBI database. The webpage is http://www.ncbi.nlm.nih.gov/
[37]Wu, M., “Joint Security and Robustness Enhancement for Quantization Based Data Embedding,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 8, pp. 831-841, 2003.
[38]Chen, B. and Wornell, G. W., “Quantization Index Modulation: a Class of Provable Good Methods for Digital Watermarking and Information Embedding,” IEEE Transactions on Information Theory, Vol. 47, pp. 1428-1443, 2001.
[39]Eggers, J. J., Bauml, R., Tzschoppe, R., and Girod, B., “Scalar Costa Scheme for Information Embedding,” IEEE Transactions on Signal Processing, Vol. 51, pp. 1003-1019, 2003.
[40]Yeung, M. M, and Mintzer, F., “An Invisible Watermarking Technique for Image Verification,” Proceedings of IEEE International Conference on Image Processing, Vol. 2, Santa Barbara, CA, pp. 680-683, 1997.
[41]Lin, C. H. and Hsieh, W. S., “Applying Projection and B-spline to Image Authentication and Remedy,” IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, pp. 1234-1239, 2003.
[42]Izquierdo, E. and Guerra, V., “An Ill-Posed Operator for Secure Image Authentication,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 8, pp. 842-852, 2003.
[43]Fridrich, J., Goljan, J., and Du, R., “Invertible Authentication Watermark for JPEG Images,” Proceedings of the SPIE Conference on Security and Watermarking of Multimedia Content, San Jose, CA, pp. 223-227, 2001.
[44]Alatar, A. M., “Reversible Watermark Using the Difference Expansion of a Generalized Integer Transform,” IEEE Transactions on Image Processing, Vol. 13, No. 8, pp. 1147-1156, 2004.
[45]Fridrich, J., Goljan, M., and Du, R., “Lossless Data Embedding – New Paradigm in Digital Watermarking,” EURASIP Journal on Applied Signal Processing, Vol. 2002, No. 2, pp. 185-196, 2002.
[46]Celik, M. U., Sharma, G., Tekalp, A. M., and Saber, E., “Lossless Generalized-LSB Data Embedding,” IEEE Transactions on Image Processing, Vol. 14, No. 2, pp. 253-266, 2005.
[47]Atallah, M. J. and Lonardi, S., “Authentication of LZ-77 Compressed Data,” Proceedings of the ACM Symposium on Applied Computing, Melbourne, FL, pp. 282-287, 2003.
[48]Bender, W., Gruhl, D., Morimoto, N., and Lu, A., “Techniques for Data Hiding,” IBM Systems Journal, Vol. 35, No. 3&4, pp. 331-336, 1996.
[49]Bourgeois, F. L., “Content Based Image Retrieval Using Gradient Color Fields,” Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, Vol. 1, pp. 1027-1030, 2000.
[50]Burrows, M. and Wheeler, D., “A Block-sorting Lossless Data Compression Algorithm,” Technical Report 124, Digital Equipment Corporation Systems Research Center, Palo Alto, CA, 1994.
[51]Hsieh, C. H. and Tsai, J. C., “Lossless Compression of VQ Index with Search-order Coding,” IEEE Transactions on Image Processing, Vol. 5, No. 11, pp. 1579-1582, 1996.
[52]Hsieh, C. H., Tsai, J. C., and Lu, P. C., “Noiseless Coding of VQ Index Using Index Grouping Algorithm,” IEEE Transactions on Communications, Vol. 44, No. 12, pp. 1643-1648, 1996.
[53]Sheu, M. H, Tsai, S. C., and Shieh, M. D., “A Lossless Index Coding Algorithm and VLSI Design for Vector Quantization,” Proceedings of the 10th VLSI/CAD Symposium, pp. 485-488, 1999.
[54]Lu, T. C., Chang, C. C., and Liu, Y. L., “A Content-based Image Authentication Scheme Based on Singular Value Decomposition,” submitted to Pattern Recognition and Image Analysis, Mar. 2004. (Under Revision)
[55]Chang, C. C. and Chan, Y. K., “A Fast Filter of Image Retrieval Based on Color-Spatial Features,” Proceedings of the Second International Workshop on Software Engineering and Multimedia Applications, Vol. 2, Barden-Barden, Germany, pp. 47-51, 2000.
[56]Chang, C. C., Lu, T. C., and Liu, Y. L., “A Bandwidth Efficiency of the Image Compression Method for Information Hiding,” Proceedings of the 18th International Conference on Advanced Information Networking and Applications, Fukuoka, Japan, pp. 426-432, 2004.
[57]Chang, C. C. and Lu, T. C., “A Difference Expansion Oriented Data Hiding Scheme for Restoring the Original Host Images,” submitted to The Journal of Systems and Software, 2005. (Under Revision)
[58]Chang, C. C., Lu, T. C., and Liu, Y. L., “An Information-hiding Scheme Based on Quantization-based Embedding Technique,” submitted to Fundamenta Informaticae, 2005.
[59]Tseng, Y. C. and Pan, H. K., “Data Hiding in 2-color Images,” IEEE Transactions on Computers, Vol. 51, No. 7, pp, 873-878, 2002.
[60]Bell, T. C., Cleary, J. G., and Witten, I. H., “Data Compression Using Adaptive Coding and Partial String Matching,” IEEE Transactions on Communications, Vol. 32, No. 4, pp. 396-402, 1984.
[61]Bell, T. C., Cleary, J. G., and Witten, I. H., Text Compression, Prentice Hall, Englewood Cliffs, NJ, 1990.
[62]Sayood, K., Introduction to Data Compression, 2nd Edition, Morgan Kaufmann, San Francisco, USA, 2000.
[63]Witten, I. H., Radford, M. and Cleary, J. G., “Arithmetic Coding for Data Compression,” Communications of ACM, Vol. 30, No. 6, pp
[64]Wang, Z. and Bovik, C., “A Universal Image Quality Index,” IEEE Signal Processing Letters, Vol. 9, No. 3, pp. 81-84, 2002.
[65]Chang, C. C., Lu, T. C., and Liu, Y. L., “A Secret Information Hiding Scheme Based on Switching Tree Coding,” Computer Security in the Twenty-First Century, (Lee, D. T., Shieh, S. P., and Tygar, J. D. Eds.), Springer Science+Business Media, Inc., NY, USA, pp. 255-263, 2005.
[66]Chan, C. S. and Chang, C. C., “An Image Hiding Scheme Based on Multi-bit-reference Substitution Table Using Dynamic Programming Strategy,” Fundamenta Informaticae, Vol. 65, No. 4, pp. 291-305, 2005.
[67]Chan, C. S., Chang, C. C., and Hu, Y. C., “A Color Image Hiding Scheme Using Image Differencing,” Optical Engineering, Vol. 44, No. 1, pp. 017003-1-017003-9, 2005.
[68]Chang, C. C. and Chuang, J. C., “A Novel Data Hiding Scheme for Halftone Images,” Pattern Recognition and Image Analysis, Vol. 14, No. 3, pp. 380-393, 2004.
[69]Chang, C. C. and Tseng, S. W., “A Steganographic Method for Digital Images Using Side-match,” Pattern Recognition Letters, Vol. 25, No. 12, pp. 1431-1437, 2004.
[70]Chang, C. C. and Lu, T. C., “Reversible Index-domain Information Hiding Scheme Based on Side-match Vector Quantization,” to appear in Journal of Systems and Software, 2005. (Accepted in Nov. 2005).
[71]Chang, C. C., Lu, T. C., Chang, Y. F., and Lee, R. C. T., “Biology-based Reversible Data Hiding Schemes,” submitted to IEEE Transactions on Nanobioscience, 2005.
[72]Wu, H. C. and Chang, C. C., “Hiding Digital Watermarks Using Fractal Compression Technique,” Fundamenta Informaticae, Vol. 58, No. 2, pp. 189-202, 2003.
[73]The chromosomes are downloaded from NCBI FTP. The webpage of the FTP are ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/CHR_01/ and ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/CHR_05/
[74]Tsai, P. Y., Hu, Y. C., and Chang, C. C., “A Color Image Watermarking Scheme Based on Color Quantization,” Signal Processing, Vol. 84, No. 4, pp. 95-106, 2004.
[75]Byun, S. C., Lee, S. K., and Tewfik, A. H., “A SVD-based Fragile Watermarking Scheme for Image Authentication,” Proceedings of International Workshop on Digital Watermarking, Seoul, Korea, pp. 211-219, 2002.
[76]Lee, S. J. and Jung, S. H., “A Survey of Watermarking Techniques Applied to Multimedia,” Proceedings of IEEE International Symposium on Industrial Electronics, Pusan, Korea, Vol. 1, pp. 272-277, 2001.
[77]Lin, C. Y. and Chang, S. F., “Semi-fragile Watermarking for Authenticating JPEG Visual Content,” Proceedings of the Security and Watermarking of Multimedia Content, San Jose, CA, pp. 140-151, 2000.
[78]Schneider, M. and Chang, S. F., “A Robust Content Based Digital Signature for Image Authentication,” Proceedings of the IEEE International Conference on Image Processing, Laussane, Switzerland, pp. 227-230, 1996.
[79]Stankovic, S., Djurovic, I. and Pitas, I., “Watermarking in the Space/Spatial Frequency Domain Using Two-Dimensional Radon-wigner Distribution,” IEEE Transactions on Image Processing, Vol. 10, No. 4, pp. 650-658, 2001.
[80]Celik, M. U., Sharma, G., Tekalp, A. M., and Saber, E., “Localized Lossless Authentication Watermark,” Proceedings of SPIE: Security and Watermarking of Multimedia Contents IV, Vol. 5020, No. 70, pp. 689-698, 2003.
[81]Celik, M. U., Sharma, G., Tekalp, A. M., and Saber, E., “Reversible Data Hiding,” Proceedings of IEEE International Conference on Image Processing, Vol. II, pp. 157-160, 2002.
[82]Faller, N., “An Adaptive System for Data Compression,” Proceedings of the 7th Asilomar Conference on Circuits, Systems, and Computers, pp. 593-597, 1973.
[83]Gallagher, R. G., “Variations on a Theme by Huffman,” IEEE Transactions on Information Theory, IT-24, No. 6, pp. 668-674, 1978.
[84]Gersho, A. and Gray, R. M., Vector Quantization and Signal Compression, Kluwer Academic Publishers, Boston, MA, 1992.
[85]Hartenstein, H., Ruhl, M., and Saupe, D., “Region-based Fractal Image Compression,” IEEE Transactions on Image Processing, Vol. 9, No. 7, pp. 1171-1184, 2000.
[86]Hsieh, C. H. and Shue, J. S., “Frame Adaptive Finite-state Vector Quantization for Image Sequence Coding,” Image Communications, Vol. 7, pp. 13-26, 1995.
[87]Huang, C. M., Bi, Q., Stiles, G. S., and Harris, R. W., “Fast Full-search Equivalent Encoding Algorithms for Image Compression Using Vector Quantization,” IEEE Transactions on Image Processing, Vol. 1, No. 3, pp. 413-416, 1992.
[88]Knuth, D. E., “Dynamic Huffman Coding,” Journal of Algorithms, Vol. 6, pp. 163-180, 1985.
[89]Nasrabadi, N. M. and King, R. B., “Image Coding Using Vector Quantization: A Review,” IEEE Transactions on Communications, Vol. 36, No. 8, pp. 957-971, 1988.
[90]Pennebaker, W. B. and Mitchell, J. L., JPEG - Still Image Data Compression Standards, Van Nostrand Reinhold, New York, 1993.
[91]Ramasubramanian, V. and Paliwal, K., “Fast K-dimensional Tree Algorithms for Nearest Neighbor Search with Application to Vector Quantization Encoding,” IEEE Transactions on Signal Processing, Vol. 40, No. 3, pp. 518-531, 1992.
[92]Sayood, K. and Memon, N. D., Lossless Compression, Communication Handbook, 2nd Edition, J. D. Gibson Ed., CRC Press, 2002.
[93]Shanbehzadeh, J. and Ogunbona, P. O., “Index-compressed Vector Quantization Based on Index Mapping,” IEE Proceedings – Vision, Image and Signal Processing, Vol. 144, pp. 31-38, 1997.
[94]Tzou, K. H., “High-order Entropy Coding for Images,” IEEE Transactions on Circuit Systems Video Technology, Vol. 2, pp. 87-89, 1992.
[95]Cachin, C., “An Information-theoretic Model for Steganography,” Proceedings of the 2nd Workshop on Information Hiding, Lecture Notes in Computer Science, Vol. 1525, pp. 305-318, 1998.
[96]Chan, Y. T., Wavelet Basics, Kluwer Academic Publishers, Norwell, MA, 1995.
[97]Chang, C. C. and Lu, T. C., “A Lossless Data Compression Scheme for VQ Index Tables,” Technical Report of the Department of Computer Science and Information Engineering, National Chung Cheng University, July 2003.
[98]Advanced Encryption Standard, NIST FIPS PUB 197, November 26, 2001.
[99]Barton, J. M., Method and Apparatus for Embedding Authentication Information within Digital Data, U.S. Patent 5 646 997, 1997.
[100]Chan, C. W. and Chang, C. C., “A New Channel for Image Hiding Based on Interpolating polynomials,” Fundamenta Informaticae, Vol. 58, No. 2, pp. 93-104, 2003.
[101]Chang, C. C. and Hwang, R. J., “A Simple Picture Hiding Scheme,” Computer Processing of Oriental Languages, Vol. 12, No. 2, pp. 237-248, 1998.
[102]Chang, C. C., Lin, M. H., and Hu, Y. C., “A Fast and Secure Image Hiding Scheme Based on LSB Substitution,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 16, No. 4, pp. 399-416, 2002.
[103]Chang, C. C., Wu, W. C., Hu, Y. C., and Li, Y. C., “Hiding Digital Data in Music Scores Using Musical Features,” Journal of Applied Systems Studies, Vol. 4, No. 3, 2003.
[104]Clelland, C. T., Risca, V., and Bancroft, C., “Hiding Messages in DNA Microdots,” Nature, Vol. 399, pp. 533-534, 1999.
[105]ElGamal, T., “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms,” IEEE Transactions on Information Theory, Vol. 31, 1985, pp. 469-472.
[106]Gehani, A., Labean, T. H., and Reif, J. H., “DNA-based Cryptography,” Proceedings of 5th DIMACS Workshop on DNA Based Computers, MIT, June 1999. The webpage is http://citeseer.ist.psu.edu/gehani99dnabased.html
[107]Lee, J. K., Ryu, S. R., and Yoo, K. Y., “Fingerprint-based Remote User Authentication Scheme Using Smart Cards,” IEE Electronics Letters, Vol. 38, No. 12, pp. 554-555, 2002.
[108]Tseng, H. W. and Chang, C. C., “High Capacity Data Hiding in JPEG-Compressed Images,” Informatica, Vol. 15, No. 1, pp. 127-142, 2004.
[109]Yu, Y. H., Chang, C. C., and Hu, Y. C., “Hiding Secret Data in Images via Predictive Coding,” Pattern Recognition, Vol. 38, pp. 691-705, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔