(100.24.122.117) 您好!臺灣時間:2021/04/12 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝博在
研究生(外文):Po-tsai Hsieh
論文名稱:利用多重輸入與多重輸出天線技術在隨建即連網路中以弓型為基礎的服務品質保證繞徑協定
論文名稱(外文):A Bow-Based QoS Routing Protocol in MIMO Ad Hoc Networks
指導教授:陳裕賢陳裕賢引用關係
指導教授(外文):Yuh-Shyan Chen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:45
中文關鍵詞:多重輸入多重輸出服務品質保證隨建即連網路繞徑
外文關鍵詞:routingQuality-of-serviceMIMOad hoc network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
多重輸入多重輸出(MIMO)天線技術,在傳送端和接收端具有多根天線,是將來在無線網路系統上發展的趨勢。在這篇論文裡,我們提出具有服務品質保證(QoS) 繞徑協定在隨建即連網路中使用多重輸入與多重輸出天線技術。服務品質保證繞徑協定必須保證傳輸的路徑對於頻寬使用要有基本需求。在傳送端和接收端同時有多元素陣列(MEAs)稱之為多重輸入多重輸出天線技術鏈結。 眾所周知的多重輸入多重輸出天線技術鏈結提供空間多工增益(spatial multiplexing gain)和多樣增益(diversity gain)。空間多工增益提供高空間使用效率,由於在同一頻道內可以同時傳送多個獨立的資料流時,稱為增速鏈結(rate-link)。另外,多樣增益可以增加傳輸距離,稱為增距鏈結(range-link)。我們的結果同時考量增速鏈結和增距鏈結的使用,發展出一個新的多重路徑服務品質保證繞徑協定。我們提出一個特別的多重路徑結構稱為弓型(bow),將在使用多重輸入與多重輸出天線技術的隨建即連網路中產生出來。每一個弓型是由多個增速鏈結和/或增距鏈結所組成。在這篇論文中,我們提出一個以弓型為基礎的服務品質保證繞徑協定在隨建即連網路中使用多重輸入與多重輸出天線技術,稱為BowQR。最後,模擬結果說明那個我們提出的BowQR繞徑協定在總流量(throughput)、成奶騍v(success rate)和平均延遲時間(average latency)三個方面得到效能的增進。
Multiple input multiple output (MIMO) techniques, which have multiple antenna at both transmitter and receiver, have a huge potential for future wireless systems. In this paper, we present a new quality-of-service (QoS) routing protocol in MIMO ad-hoc networks. The QoS routing protocol supports mobile applications to guarantee its bandwidth requirement. Links with multiple element arrays (MEAs) at both ends are
called as MIMO links. It is known that MIMO links provide spatial multiplexing gain and diversity gain. The spatial multiplexing gain provides extremely high spectral efficiencies in multipath channels by simultaneously transmitting multiple independent data streams in the same channel, which is denoted as rate-link. In addition, the diversity gain provides to increase transmission range, which is denoted as range-link. This work simultaneously takes into consideration of rate-link and range-link to develop a new multi-path routing protocol for QoS consideration. In this work, a special multi-path structure, called as bow, is identified in the MIMO ad hoc
networks. Each bow is composed by rate-link and/or range-link. In this paper, a bow-based quality-of-service (QoS) routing protocol, namely BowQR, is developed in MIMO ad hoc networks. Finally, the simulation results illustrate that our BowQR protocol achieves the performance improvements in throughput, success rate, and average latency.
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Related works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Basic idea and challenges . . . . . . . . . . . . . . . . . . . . . . . . 6
4 BowQR: Bow-based QoS routing protocol . . . . . . . . . . . . . . . . . . 13
4.1 Phase 1: bow identification . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Phase 2: bow-based QoS routing path construction . . . . . . . . . . . . 19
4.3 Phase 3: bow-path maintenance . . . . . . . . . . . . . . . . . . . . . 22
5 Simulation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 Success rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.1 Success rate vs. density level . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Success rate vs. mobility . . . . . . . . . . . . . . . . . . . . . . 27
5.1.3 Success rate vs. bandwidth requirement . . . . . . . . . . . . . . . . 27
5.1.4 Success rate vs. average network bandwidth . . . . . . . . . . . . . . 29
5.1.5 Success rate vs. ratio of range-link period . . . . . . . . . .. . . . 29
5.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.1 Throughput vs. density level . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Throughput vs. mobility . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.3 Throughput vs. bandwidth requirement . . . . . . . . . . . . . . . . . 30
5.2.4 Throughput vs. average network bandwidth . . . . . . . . . . . . . . . 32
5.2.5 Throughput vs. ratio of range-link period . . . . . . . . . . .. . . . 32
5.3 Average latency . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 32
5.3.1 Average latency vs. density level . . . . . . . . . . . . . . . . . . 33
5.3.2 Average latency vs. mobility . . . . . . . . . . . . . . . . . . . . . 33
5.3.3 Average latency vs. bandwidth requirement . . . . . . . . . . . . . . 33
5.3.4 Average latency vs. average network bandwidth . . . . . . . . . . . . 33
5.3.5 Average latency vs. ratio of range-link period . . . . . . . . . . . . 35
5.4 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.1 Overhead vs. density level . . . . . . . . . . . . . . . . . . . . . . 37
5.4.2 Overhead vs. mobility . . .. . . . . . . . . . . . . . . . . . . . . . 37
5.4.3 Overhead vs. bandwidth requirement . . . . . . . . . . . . . . . . . .37
5.4.4 Overhead vs. average network bandwidth . . . . . . . . . . . . . . . .37
5.4.5 Overhead vs. ratio of range-link period . . . . . . . . . . . . . . . .38
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
[1] S. Alamouti. ”A Simple Transmit Diversity Technique for Wireless Communications”. IEEE Journal on Selected Areas in Communications (JSAC), Vol. 16, No. 8, pp. 1451 - 1458, October 1998.
[2] S. J. Baek, G. Kim, and S. M. Nettles. ”A Max-min Strategy for QoS Improvement in MIMO Ad-Hoc Networks”. IEEE Vehicular Technology Conference (VTC), Vol. 23, pp. 2473 - 2477, Stockholm, Sweden, 30 May - 1 June 2005 - spring.
[3] L. Chen and W. B. Heinzelman. ”QoS-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks”. IEEE Journal on Selected Areas in Communications (JSAC), IEEE Journal on Selected Areas in Communications (JSAC), Vol. 23, No. 3, pp. 278 - 299,
March 2005.
[4] Y.-S. Chen and Y.-W. Ko. ”A Lantern-Tree-Based QoS Multicast Protocol in aWireless Mobile Ad Hoc Network”. IEICE Transactions on Communications, Vol. E87-B, No. 3, pp. 717 - 726, March 2004.
[5] Y.-S. Chen, Y.-C. Tseng, J.-P. Sheu, and P.-H. Kuo. ”An On-Demand, Link-State, Multi-Path QoS Routing in a Wireless Mobile Ad-Hoc Network”. Computer Communications, Vol. 27, No. 1, pp. 27 - 40, January 2004.
[6] Y.-S. Chen and Y.-T. Yu. ”Spiral-Multi-Path QoS Routing Protocol in a Wireless Mobile Ad-Hoc Network”. IEICE Computer Communications, Vol. E87-B, No. 1, pp. 104 - 116, January 2004.
[7] D. Gesbert, M. Shafi, D. Shiu, P. J. Smith, , and A. Naguib. ”From Theory to Practice: An Overview of MIMO Space-Time Coded Wireless Systems”. IEEE Journal on Selected Areas in Communications (JSAC), Vol. 21, No. 3, pp. 281 - 301, April 2003.
[8] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath. ”Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications (JSAC), Vol. 21, No. 5, pp. 684 - 702, Jun. 2003.
[9] P. Gupta and P. R. Kumar. ”The Capacity of Wireless Networks”. IEEE Transactions on Information Theory, Vol. 46, No.2, pp. 388 - 404, March 2000.
[10] M. G. Joon-Sang Park, Alok Nandan and H. Lee. ”SPACE-MAC: Enabling Spatial Reuse using MIMO channel-ware MAC”. IEEE Internation Communications Conference (ICC), Vol. 23, No. 3, pp. 278 - 299, Seoul, Korea, August 2005.
[11] R. W. H. Jr. and A. J. Paulraj. ”Switching between Diversity and Multiplexing in MIMO Systems”. IEEE Transactions on Communications (TMC), Vol. 53, No. 6, pp. 962 - 968, June 2005.
[12] W.-H. Liao, Y.-C. Tseng, and K.-P. Shih. ”A TDMA-based Bandwidth Reservation Protocol for QoS Routing in a Wireless Mobile Ad Hoc Network”. IEEE International Conference on Communications (ICC), Vol. 5, pp. 3186 - 3190, New York, USA, 28 April - 2 May 2002.
[13] W.-H. Liao, Y.-C. Tseng, S.-L. Wang, and J.-P. Sheu. ”A Multi-Path QoS Routing Protocol in a Wireless Mobile Ad Hoc Network”. IEEE International Conference on Networking (ICN), Vol. 2, pp. 158-167, Colmar, France, 9-13 July 2001.
[14] C. R. Lin and J.-S. Lin. ”QoS Routing in Ad Hoc Wireless Networks”. IEEE Journal on Selected Areas in Communications (JSAC), IEEE Journal on Selected Areas in Communications (JSAC), Vol. 17, No. 8, pp. 1426 - 1438, August 1999.
[15] W. Shao, V. Li, and S. S. Chan. ”A Distributed Bandwidth Reservation Algorithm for QoS Routing in TDMA-based Mobile Ad Hoc Networks”. 2005 Workshop on Networks High Performance Switching and Routing (HPSR), pp. 317 - 321, 12-14 May 2005.
[16] K.-P. Shih, C.-Y. Chang, Y.-D. Chen, and T.-H. Chuang. ”A Distributed Slots Reservation Protocol for QoS Routing on TDMA-based Mobile Ad Hoc Networks”. IEEE International Conference on Networks (ICON), Vol. 2, pp. 660 - 664, Hilton, Singapore, 16-19 November 2004.
[17] K. Sundaresan and R. Sivakumar. ”A Fair Medium Access Control Protocol for Ad-Hoc Networks with MIMO Links”. IEEE International Conference on Computer Communication (INFOCOM), Vol. 4, pp. 2559 - 2570, Hong Kong, 7 - 11 March 2004.
[18] K. Sundaresan and R. Sivakumar. ”A Unified MAC Layer Framework for Ad-Hoc Networks with Smart Antennas”. ACM International Conference on Mobile Computing and Networking (MobiCom), pp. 71 - 74, Philadelphia, PA, USA, 26 September - 1 October 2004.
[19] K. Sundaresan and R. Sivakumar. ”Medium access control in ad hoc networks with MIMO links: optimization considerations and algorithms”. IEEE Transactions on Mobile Computing (TMC), Vol. 3, NO.4, pp. 350 - 365, October - December 2004.
[20] K. Sundaresan and R. Sivakumar. ”Routing in Ad-Hoc Networks with MIMO Links”. IEEE International Conference on Network Protocols (ICNP), pp. 85 - 98, Boston, Massachusetts,
USA, 6-9 November 2005.
[21] K. Sundaresan and R. Sivakumar. ”Routing in Ad-Hoc Networks with MIMO Links”. Technical report, GNAN Technical Report, http://www.ece.gatech.edu/research/GNAN/archive/trrouting.pdf, March 2005.
[22] L. Zheng and D. Tse. ”Diversity and Multiplexing: A Fundamental Tradeoff in Multipleantenna Channels”. IEEE Transactions on Information Theory, Vol. 49, No. 5, pp. 1073 -
1096, May 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔