跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 20:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪均庭
研究生(外文):Chun-ting Hung
論文名稱:一種新的H.264無線視訊傳輸錯誤隱蔽方法
論文名稱(外文):A New Error Concealment Scheme for Wireless H.264 Video Transmission
指導教授:柳金章柳金章引用關係
指導教授(外文):Jin-jang Leou
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:112
中文關鍵詞:錯誤隱蔽運動向量錯誤偵測
外文關鍵詞:error concealmentBNM algorithmrood search pattern
相關次數:
  • 被引用被引用:0
  • 點閱點閱:519
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在一個熵編碼視訊串流資料中,傳輸錯誤將會影響目前及接續的視訊資料。為解決此同步問題,對於H.264視訊壓縮資料,我們利用frame交錯以及FMO技術將視訊資料分散到不同的視訊傳輸封包中,在單一或連續視訊傳輸封包中蔓延的錯誤將會被分散到不同的視訊frame,而同步的問題將能較容易的解決。
在解碼時,利用所提之錯誤偵測方法偵測出錯誤封包後,利用所提之錯誤隱蔽方法來隱蔽所有錯誤的blocks。針對I frames所提出的錯誤隱蔽方法將利用像素差補以及快速BNM演算法加以隱蔽。針對P frames的錯誤隱蔽方法,最佳的預測隱蔽block搜尋則是利用所有可能的空間與時間性的運動向量進行預測。空間性的預測運動向量是利用損壞block相鄰的運動向量預測隱蔽的運動向量。時間性的預測運動向量則是利用前一張frame中經運動補償後有覆豪鴠堳e損壞block的所有運動向量作為預測運動向量。為加速搜尋程序,我們提出三種十字搜尋樣式,稱為五點、八點、及十二點十字搜尋,以便對小、中、及大的運動向量作不同搜尋。當所有P frame中損壞的blocks做完初步補償動作後,利用所有已隱蔽blocks的運動向量再做一次運動估測隱蔽,以提升錯誤隱蔽blocks的品質。另外,為提升隱蔽blocks的邊緣匹配量測,我們提出新的匹配方式DBME方法,對不同的匹配方向加以量測可得到更佳的匹配。
實驗結果顯示,與其他方法相比較,所提出的方法在平均PSNR效能上都有不錯的效能以及較佳的視訊品質,這顯示所提方法的可適性。
For an entropy-coded video bitstream, a transmission error in a codeword will not only affect the underlying codeword but may also affect subsequent codewords, resulting in a great degradation of received video frames. To cope with the synchronization problem, a compressed H.264 video bitstream is transformed into transmission video packets by frame interleaving and FMO function enabling, which are transmitted from the encoder to the decoder. Transmission errors in one/consecutive transmission video packet(s) will be distributed into different video frames (slices or blocks) so that the synchronization problem can be solved easily.
In the proposed scheme, corrupted transmission packets are detected under decoding. After all the corrupted slices (block) within transmission video packets are detected by the proposed error detection scheme, the proposed error concealment scheme is used to conceal all the corrupted blocks. In this study, the proposed error concealment scheme for I frames using pixel interpolation and the fast BNM algorithm is used to conceal I frames. In inter-coded P frames, the optimal candidate concealed block for a corrupted block is searched over all the motion-compensated blocks in the previous video frame with their MVs being determined by all the available spatial and temporal information. First, the PMV for a corrupted block is determined by the spatial MVs around the corrupted block and the corresponding temporally motion-projected overlapping MVs in the previous reference frame. To speed up the search process, three kinds of rood search patterns in the previous reference frame, namely, 5-, 8-, and 12-point rood search patterns, for determine the optimal MV of the corrupted block are proposed for small-, medium-, and large-motion blocks, respectively. After all the corrupted blocks in a P frame are initially concealed, error concealment refinement is performed on all the initial concealed blocks to improve the error concealment results. A new fitness function containing the proposed DBME (directional boundary match measure) for error concealment is also proposed.
Based on the simulation results obtained in this study, the performance of the proposed scheme is better than that of the corresponding comparison schemes. Additionally, the proposed scheme can be easily employed in several existing network environments and applicable to many other block-based image/video compression standards, such as MPEG-2, H.263 and MPEG-4, with some necessary modifications. This shows the feasibility of the proposed scheme.
摘 要 i
ABSTRACT iii
ACKNOWLEDGMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xiii

CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Survey of Related Researches 3
1.3 Overview of Proposed Approach 10
1.4 Thesis Organization 11

CHAPTER 2 H.264 VIDEO COMPRESSION STANDARD AND ITS ERROR CONCEALMENT TECHNIQUES 12
2.1 The H.264 Video Compression Standard 12
2.1.1 Overview of H.264 video…………………...……………………...12
2.1.2 H.264 Video Compression Techniques..…...……………………...12
2.1.3 Syntax and data organization of H.264 video……………………...18
2.2 Error Resilient Techniques 26
2.2.1 Flexible Macroblock Ordering (FMO) 26
2.2.2 Resynchronization 27
2.2.3 Data partitioning 28
2.3 Error concealment 29

CHAPTER 3 PROPOSED ERROR CONCEALMENT SCHEME FOR H.264 VIDEO TRANSMISSION 31
3.1 Transforming H.264 compressed video bitstream into wireless transmission video packet 31
3.2 Proposed Error Detection Scheme 33
3.3 Proposed Error Concealment Scheme...…………………………………34
3.3.1 Proposed error concealment scheme for H.264 intra-coded I frames 34
3.3.2 Proposed error concealment scheme for H.264 inter-coded P frames 43

CHAPTER 4 SIMULATION RESULTS 49

CHAPTER 5 DISCUSSIONS AND CONCLUSIONS 71
5.1 Discussions 71
5.2 Conclusions 73

REFERENCES 75
[1]R. C. Gonzalez and R. E. Woods, Digital Image Processing. 2nd Edition, New Jersey: Prentice Hall, 2002.
[2]A. Puri and T. Chen, Multimedia Systems, Standards, and Networks. New York: Marcel Dekker, 2000.
[3]M. T. Sun and A. R. Reibman, Compressed Video over Networks. New York: Marcel Dekker, 2001.
[4]Y. Wang, J. Ostermann, and Y. Q. Zhang, Video Processing and Communications. New Jersey: Prentice Hall, 2002.
[5]J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, MPEG Video Compression Standard. New York: Chapman & Hall, 1997.
[6]B. G. Haskell, A. Puri, and A. N. Netravali, Digital Video: An Introduction to MPEG-2. New York: Chapman & Hall, 1997.
[7]ISO/IEC JTC1/SC29/WG11/602, “Coding of moving pictures and associated audio,” Recommendation H.262, 1993.
[8]ISO/IEC JTC1/SC29/WG11 N3515, “MPEG-4 video verification model version 17.0,” Beijing, July 2000.
[9]H.264, Draft ITU-T Recommendation and Final Draft International Standard, Redmond, WA, USA, July 2004.
[10]W. M. Lam, A. R. Reibman, and B. Liu, “Recovery of lost or erroneously received motion vectors,” in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 5, April 1993, pp. 417-420.
[11]A. Hallapuro, V. Lappalainen, and T. D. Hamadinen, “Performance analysis of low bit rate H.26L video encoder,” in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 2, May 2001, pp. 1129-1132.
[12]Y. Wang, S. Wenger, J. Wen, and A. K. Katsaggelos, “Error resilient video coding techniques,” IEEE Signal Processing Magazine, vol. 17, no. 4, pp. 61-82, July 2000.
[13]Y. Wang and Q. F. Zhu, “Error control and concealment for video communication: a review,” Proceedings of the IEEE, vol. 86, no. 5, pp. 974-997, May 1998.
[14]S. Wenger, G. Knorr, J. Ott, and F. Kossentini, “Error resilience support in H.263+,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 8, no. 7, pp. 867-877, Nov. 1998.
[15]I. Moccagatta, S. Soudagar, J. Liang, and H. Chen, “Error-resilient coding in JPEG-2000 and MPEG-4,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 899-914, June 2000.
[16]ISO/IEC JTC1/SC29/WG11 N3093, “MPEG-4 video verification model version 15.0,” 1999.
[17]T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560-576, July 2003.
[18]Iain E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia. Chichester, West Sussex, England: John Wiley & Sons, 2003.
[19]A. Poli and L. Huguet, Error Correcting Codes. Englewood Cliffs, NJ: Prentice Hall, 1992.
[20]H. Ohta and T. Kitami, “A cell loss recovery method using FEC in ATM networks,” IEEE Journal on Selected Areas in Communications, vol. 9, no. 9, pp. 1471-1483, Dec. 1991.
[21]Q. F. Zhu, Y. Wang, and L. Shaw, “Coding and cell-loss recovery in DCT-based packet video,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 3, no. 3, pp. 248-258, June 1993.
[22]P. G. Sherwood and K. Zeger, “Progressive image coding for nosiy channels,” IEEE Signal Processing Letters, vol. 4, no. 7, pp. 189-191, July 1997.
[23]M. J. Ruf and J. W. Modestino, “Operational rate-distortion performance for joint source and channel coding of images,” IEEE Trans. on Image Processing, vol. 8, no. 3, pp. 305-320, March 1999.
[24]J. Cai and C. W. Chen, “Robust joint source-channel coding for image transmission over wireless channels,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 10, no. 6, pp. 962-966, Sept. 2000.
[25]P. C. Cosman, J. K. Rogers, P. G. Sherwood, and K. Zeger, “Combined forward error control and packetized zerotree wavelet encoding for transmission of images over varying channels,” IEEE Trans. on Image Processing, vol. 9, no. 6, pp. 982-993, June 2000.
[26]B. A. Banister, B. Belzer, and T. R. Fischer, “Robust image transmission using JPEG2000 and turbo-codes,” IEEE Signal Processing Letters, vol. 9, no. 4, pp. 117-119, April 2002.
[27]H. Yang and K. Rose, “Source-channel prediction in error resilient video coding,” in IEEE Int. Conf. on Multimedia and Expo, vol. 2, July 2003, pp. 233-236.
[28]A. Nafaa, T. Ahmed, and A. Mehaoua, “Unequal and interleaved FEC protocol for robust MPEG-4 multicasting over wireless LANs,” in IEEE Int. Conf. on Communications, vol. 3, pp. 1431-1435, June 2004.
[29]F. Zhai, Y. Eisenberg, and T. N. Pappas, “An integrated joint source-channel coding framework for video transmission over packet lossy networks,” in IEEE Int. Conf. on Image Processing, vol. 4, Oct. 2004, pp. 2531-2534.
[30]Y. Takishima, M. Wada, and H. Murakami, “Reversible variable length codes,” IEEE Trans. on Communications, vol. 43, no. 2, pp. 158-162, Feb. 1995.
[31]D. W. Redmill and N. G. Kingsbury, “The EREC: an error-resilient technique for coding variable-length blocks of data,” IEEE Trans. on Image Processing, vol. 5, no. 4, pp. 565-574, April 1996.
[32]R. Chandramouli, N. Ranganathan, and S. J. Ramadoss, “Adaptive quantization and fast error-resilient entropy coding for image transmission,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 8, no. 4, pp. 411-421, Aug. 1998.
[33]H. S. Jung, R. C. Kim, and S. U. Lee, “A hierarchical synchronization technique based on the EREC for robust transmission of H.263 bit stream,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 10, no. 3, pp. 433-438, April 2000.
[34]G. Cote, M. Gallant, and F. Kossentini, “Semi-fixed-length motion vector coding for H.263-based low bit rate video compression,” IEEE Trans. on Image Processing, vol. 8, no. 10, pp. 1451-1455, Oct. 1999.
[35]H. Man, F. Kossentini, M. J. T. Smith, “An error resilient coding technique for JPEG2000,” in Proc. of IEEE Int. Conf. on Image Processing, Vancouver, BC, Canada, Sept. 2000, pp. 364-367.
[36]B. Fong, G. Y. Hong, A. C. M. Fong, “Constrained error propagation for efficient image transmission over noisy channels,” IEEE Trans. on Consumer Electronics, vol. 48, no. 1, pp. 49-55, Feb. 2002.
[37]T. Wiegand, M. Lightstone, D. Mukherjee, T. G. Campbell, and S. K. Mitra, “Rate-distortion optimized mode selection for very low bit rate video coding and the emerging H.263 standard,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 6, no. 2, pp. 182-190, April 1996.
[38]J. Lee and B. W. Dickinson, “Rate-distortion optimized frame type selection for MPEG encoding,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 7, no. 3, pp. 501-510, June 1997.
[39]G. Cote and F. Kossentini, “Optimal intra coding of blocks for robust video communication over the Internet,” Signal Processing: Image Communication, vol. 15, pp. 25-34, Sept. 1999.
[40]G. Cote, S. Shirani, and F. Kossentini, “Optimal mode selection and synchronization for robust video communications over error-prone networks,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 952-965, June 2000.
[41]R. Zhang, S. L. Regunathan, and K. Rose, “Video coding with optimal inter/intra-mode switching for packet loss resilience,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 966-976, June 2000.
[42]D. Wu, Y. T. Hou, B. Li, W. Zhu, Y. Q. Zhang, and H. J. Chao, “An end-to-end approach for optimal mode selection in Internet video communication: theory and application,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 977-995, June 2000.
[43]W. H. J. Chen and J. N. Hwang, “The CBERC: a content-based error-resilient coding technique for packet video communications,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 11, no. 8, pp. 974-980, Aug. 2001.
[44]P. Frossard and O. Verscheure, “AMISP: a complete content-based MPEG-2 error-resilient scheme,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 11, no. 9, pp. 989-998, Sept. 2001.
[45]L. Cheng and M. E. Zarki, “Perceptual quality feedback based progressive frame-level refreshing for robust video communication,” in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 3, May 2004, pp. 241-244.
[46]L. P. Chau, and T. Fang, “An efficient resynchronization technique for perceptual quality enhancement for robust video transmission,” in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 3, May 2004, pp. 237-240.
[47]J. Zheng and L. P. Chau, “Content-based periodic macroblock for error-resilient transmission on H.264 video,” in IEEE Int. Conf. on Image Processing, vol. 2, Oct. 2004, pp. 845-848.
[48]R. Aravind, M. R. Civanlar, and A. R. Reibman, “Packet loss resilience of MPEG-2 scalable video coding algorithms,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 6, no. 5, pp. 426-435, Oct. 1996.
[49]U. Horn, K. Stuhlmuller, M. Link, and B. Girod, “Robust internet video transmission based on scalable coding and unequal error protection,” Signal Processing: Image Communication, vol. 15, pp. 77-94, 1999.
[50]M. Gallant and F. Kossentini, “Rate-distortion optimized layered coding with unequal error protection for robust Internet video,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 357-372, March 2001.
[51]J. Vass, S. Zhuang, and X. Zhuang, “Scalable, error-resilient, and high-performance video communications in mobile wireless environments,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 11, no. 7, pp. 833-847, July 2001.
[52]H. Gharavi and S. M. Alamouti, “Multipriority video transmission for third-generation wireless communication systems,” Proceedings of the IEEE, vol. 87, pp. 1751-1763, Oct. 1999.
[53]H. Man, F. Kossentini, and M. J. T. Smith, “A family of efficient and channel error resilient wavelet/subband image coders,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 9, no. 1, pp. 95-108, Feb. 1999.
[54]A. A. Alatan, M. Zhao, and A. N. Akansu, “Unequal error protection of SPIHT encoded image bit streams,” IEEE J. on Selected Areas in Communications, vol. 18, no. 6, pp. 814-818, June 2000.
[55]S. Cho and W. A. Pearlman, “A full-featured, error-resilient, scalable wavelet video codec based on the set partitioning in hierarchical trees (SPIHT) algorithm,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 12, no. 3, pp. 157-171, March 2002.
[56]Z. Wu, A. Bilgin, and M. W. Marcellin, “Unequal error protection for transmission of JPEG2000 codestreams over noisy channels,” in Proc. of IEEE Int. Conf. on Image Processing, 2002, pp. 213-216.
[57]J. R. Chen, C. S. Lu, and K. C. Fan, “A significant motion vector protection-based error-resilient scheme in H.264,” in IEEE 6th Workshop on Multimedia Signal Processing, Sept. 2004, pp. 287-290.
[58]Q. Qu, Y. Pei, J. W. Modestino, and X. Tian, “Error-resilient wireless video transmission using motion-based unequal error protection and intra-frame packet interleaving,” in IEEE Int. Conf. on Image Processing, vol. 2, Oct. 2004, pp. 837-840.
[59]D. Chung and Y. Wang, “Multiple description image coding using signal decomposition and reconstruction based on lapped orthogonal transforms,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 9, no. 6, pp. 895-908, Sept. 1999.
[60]Y. Wang, M. Orchard, V. Vaishampayan, and A. R. Reibman, “Multiple description coding using pairwise correlating transform,” IEEE Trans. on Image Processing, vol. 10, no. 3, pp. 351-366, March 2001.
[61]S. D. Servetto, K. Ramchandran, V. A. Vaishampayan, and K. Nahrstedt, “Multiple description wavelet based image coding,” IEEE Trans. on Image Processing, vol. 9, no. 5, pp. 813-826, May 2000.
[62]Y. Wang and S. Lin, “Error-resilient video coding using multiple description motion compensation,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 12, no. 6, pp. 438-452 , June 2002.
[63]Y. Wang, A. R. Reibman, M. T. Orchard, and H. Jafarkhani, “An improvement to multiple description transform coding,” IEEE Trans. on Signal Processing, vol. 50, no. 11, pp. 2843-2854, Nov. 2002.
[64]Y. Wang, and Q. F. Zhu, “Maximally smooth image recovery in transform coding,” IEEE Trans. on Communications, vol. 41, no. 10, pp. 1544-1551, Oct. 1993.
[65]H. Sun and W. Kwok, “Concealment of damaged block transform coded images using projections onto convex sets,” IEEE Trans. on Image Processing, vol. 4, no. 4, pp. 470-477, April 1995.
[66]W. Zeng and B. Liu, “Geometric-structure-based error concealment with novel applications in block-based low-bit-rate coding,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 9, no. 4, pp. 648-665, June 1999.
[67]Z. Wang, Y. Yu, and D. Zhang, “Best neighborhood matching: an information loss restoration technique for block-based image coding systems,” IEEE Trans. on Image Processing, vol. 7, no. 7, pp. 1056-1061, July 1998.
[68]D. Zhang and Z. Wang, “Image information restoration based on long-range correlation,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 12, no. 5, pp. 331-341, May 2002.
[69]X. Li and M. T. Orchard, “Novel sequential error-concealment techniques using orientation adaptive interpolation,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 12, no. 10, pp. 857-864, Oct. 2002.
[70]S. S. Hemami and T. H. Y. Meng, “Transform coded image reconstruction exploiting interblock correlation,” IEEE Trans. on Image Processing, vol. 4, no. 7, pp. 1023-1027, July 1995.
[71]W. Zhu, Y. Wang, and Q. F. Zhu, “Second-order derivative-based smoothness measure for error concealment in DCT-based codecs,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 8, no. 6, pp. 713-718, Oct. 1998.
[72]S. Shirani, F. Kossentini, and R. Ward, “Reconstruction of baseline JPEG coded images in error prone environments,” IEEE Trans. on Image Processing, vol. 9, no. 7, pp. 1292-1299, July 2000.
[73]S. C. Hsia, “An edge-oriented spatial interpolation for consecutive block error concealment,” IEEE Signal Processing Letters, vol. 11, no. 6, pp. 577-580, June 2004.
[74]Y. Zhao, H. Chen, X. Chi, and J. S. Jin, “Spatial error concealment using directional extrapolation,” Digital Image Computing: in Proc. of Technqiues and Applications, pp. 279-283, Dec 2005.
[75]Z. Yan, T. Dong, M. M. Hannukasela, and M. Gabbouj, “Spatial error concealment based on directional decision and intra prediction,” in Proc. of IEEE Int. Symposium on Circuits and Systems, May 2005, vol. 3, pp. 2899-2902.
[76]M. Ghanbari and V. Seferidis, “Cell-loss concealment in ATM video codecs,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 3, no. 3, pp. 238-247, June 1993.
[77]L. H. Kieu and K. N. Ngan, “Cell-loss concealment techniques for layered video codecs in an ATM network,” IEEE Trans. on Image Processing, vol. 3, no. 5, pp. 666-677, Sept. 1994.
[78]M. J. Chen, L. G. Chen, and R. M. Weng, “Error concealment of lost motion vectors with overlapped motion compensation,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 7, no. 3, pp. 560-563, June 1997.
[79]J. Zhang, J. F. Arnold, and M. R. Frater, “A cell-loss concealment technique for MPEG-2 coded video,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 10, no. 4, pp. 659-665, June 2000.
[80]J. Y. Pyun, J. S. Lee, J. W. Jeong, J. H. Jeong, and S. J. Ko, “Robust error concealment for visual communications in burst-packet-loss networks,” IEEE Trans. on Consumer Electronics, vol. 49, no. 4, pp. 1013-1019, Nov. 2003.
[81]B. Yan and K. W. Ng, “A novel selective motion vector matching algorithm for error concealment in MPEG-4 video transmission over error-prone channels,” IEEE Trans. on Consumer Electronics, vol. 49, no. 4, pp. 1416-1423, Nov. 2003.
[82]Y. Xu and Y. Zhou, “H.264 video communication based refined error concealment schemes,” IEEE Trans. on Consumer Electronics, vol. 50, no. 4, pp. 1135-1141, Nov. 2004.
[83]J. Zheng and L. P. Chau, “error-concealment algorithm for H.26L using first-order plane estimation,” IEEE Trans. on Multimedia, vol. 6, no. 6, pp. 801-805, Dec. 2004.
[84]S. Tsekeridou, F. A. Cheikh, M. Gabbouj, and I. Pitas, “Vector rational interpolation schemes for erroneous motion field estimation applied to MPEG-2 error concealment,” IEEE Trans. on Multimedia, vol. 6, no. 6, pp. 876-885, Dec. 2004.
[85]J. Zheng and L. P. Chau, “A temporal error concealment algorithm for H.264 using Lagrange interpolation,” Proceedings of the IEEE, vol. 2, pp. 133-136, May 2004.
[86]J. Zheng and L. P. Chau, “Efficient motion vector recovery algorithm for H.264 based on a polynomial model,” IEEE Trans. on Multimedia, vol. 7, no. 3, pp. 507-513, June 2005.
[87]M. J. Chen, W. W. Liao, and M. C. Chi, “Robust temporal error concealment for H.264 video decoder,” Int. Conf. on Consumer Electronics, 2006 Digest of Technical Papers, Jan 2006, pp. 383-384.
[88]H. Sun, K. Challapalli, and J. Zdepski, “Error concealment in digital simulcast AD-HDTV decoder,” IEEE Trans. on Consumer Electronics, vol. 38, no. 3, pp. 108-118, Aug. 1992.
[89]W. J. Chu and J. J. Leou, “Detection and concealment of transmission errors in H.261 images,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 8, no. 1, pp. 74-84, Feb. 1998.
[90]H. C. Shyu and J. J. Leou, “Detection and concealment of transmission errors in MPEG-2 images-a genetic algorithm approach,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 9, no. 6, pp. 937-948, Sept. 1999.
[91]M. C. Hong, L. Kondi, H. Scwab and A. K. Katsaggelos, “Video error concealment techniques,” Signal Processing: Image Communication, special issue on error resilient video, vol. 14, pp. 437-492, April 1999.
[92]S. Tsekeridou and I. Pitas, “MPEG-2 error concealment based on block-matching principles,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 10, no. 4, pp. 646-658, June 2000.
[93]S. Shirani, F. Kossentini, and R. Ward, “A concealment method for video communications in an error-prone environment,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 1122-1128, June 2000.
[94]P. Salama, N. B. Shroff, and E. J. Delp, “Error concealment in MPEG video streams over ATM networks,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 1129-1144, June 2000.
[95]S. Valente, C. Dufour, F. Groliere, and D. Snook, “An efficient error concealment implementation for MPEG-4 video streams,” IEEE Trans. on Consumer Electronics, vol. 47, no. 3, pp. 568-578, Aug. 2001.
[96]Y. C. Lee, Y. Altunbasak, and R. M. Mersereau, “Multiframe error concealment for MPEG-coded video delivery over error-prone networks,” IEEE Trans. on Image Processing, vol. 11, no. 11, pp. 1314-1331, Nov. 2002.
[97]Y. K. Wang, M. M. Hannuksela, V. Varsa, A. Hourunranta, and M. Gabbouj, “The error concealment feature in the H.26L test model,” in Proc. of IEEE Int. Conf. on Image Processing, 2002, pp. 729-732.
[98]L. W. Kang and J. J. Leou, “ A hybrid error concealment scheme for MPEG-2 video transmission based on best neighborhood matching algorithm,” in Proc. of 2004 IEEE Int. Conf. on Multimedia and Expo, vol 2, June 2004, pp. 1355-1358.
[99]T. Y. Kuo and S. H. Li, “Hybrid temporal-spatial error concealment technique for video communications,” in Proc. of 2004 IEEE Int. Conf. on Multimedia and Expo, vol. 3, June 2004, pp. 1743-1746.
[100]W. L. Chen and J. J. Leou, “A new hybrid error concealment scheme for H.264 video transmission,” in Proc. of 2006 IEEE Int. Conf. on Wireless Networks, Communications, and Mobile Computing, Vancouver, Canada, 2006, pp. 61-66.
[101]P. Yin, B. Liu, and H. H. Yu, “Error concealment using data hiding,” in Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 3, May 2001, pp. 1453-1456.
[102]C. Y. Lin, D. Sow, and S. F. Chang, “Using self-authentication-and-recovery images for error concealment in wireless environments,” in Proc. of SPIE, vol. 4518, Aug. 2001, pp. 267-274.
[103]J. Wang and L. Ji, “A region and data hiding based error concealment scheme for images,” IEEE Trans. on Consumer Electronics, vol. 47, no. 2, pp. 257-262, May 2001.
[104]M. Kurosaki, K. Munadi, and H. Kiya, “Error concealment using layer structure for JPEG2000 images,” in Proc. of IEEE Asia-Pacific Conf. on Circuits and Systems, 2002, pp. 529-534.
[105]C. S. Lu, “Wireless multimedia error resilience via a data hiding technique,” in Proc. of IEEE Int. Workshop on Multimedia Signal Processing, St. Thomas, US Virgin Islands, Dec. 2002, pp. 316-319.
[106]L. W. Kang and J. J. Leou, “An error resilient coding scheme for H.264/AVC video transmission based on data embedding,” Journal of Visual Communication and Image Representation, vol. 16, no. 1, pp. 93-114, Feb. 2005.
[107]T. H. Wang, T. H. Lee, and P. C. Chang, “Error Detection by Parity Checks for H.263 Compatible Video Coding,” in Proc. of IEEE Data Compression Conference, Snowbird, Utah, March 2001, p. 522.
[108]Z. W. Gao and W. N. Lie, “MPEG-4 video error detection by using data hiding techniques,” in Proc. of IEEE Int. Symposium on Circuits and Systems, May 2002, vol. 3, pp. 397-400.
[109]P. Zhou and Y. He, “A fragile watermark error detection scheme for JVT,” in Proc. of IEEE Int. Symposium on Circuits and Systems, Bangkok, Thailand, May 2003, vol. 2, pp. 956-958.
[110]F. Bartolini, A. Manetti, A. Piva, and M. Barni, “A data hiding approach for correcting errors in H.263 video transmitted over a noisy channel,” in Proc. of IEEE Int. Workshop on Multimedia Signal Processing, Cannes, France, Oct. 2001, pp. 65-70.
[111]D. L. Robie and R. M. Mersereau, “Video error correction using steganography,” in Proc. of IEEE Int. Conf. on Image Processing, Thessaloniki, Greece, Oct. 2001, pp. 930-933.
[112]D. L. Robie and R. M. Mersereau, “Video error correction using data hiding techniques,” in Proc. of IEEE Int. Workshop on Multimedia Signal Processing, Cannes, France, Oct. 2001, pp. 59-64.
[113]D. L. Robie, N. Wu, and R. M. Mersereau, “The use of steganography to enhance error detection and correction in MPEG-2 video,” in Proc. of IEEE Asilomar Conf. on Signals, Systems and Computers, Nov. 2002, vol. 2, pp. 1204-1209.
[114]J. Song, and K. J. R. Liu, “A data embedded video coding scheme for error-prone channels,” IEEE Trans. on Multimedia, vol. 3, no. 4, pp. 415-423, Dec. 2001.
[115]M. Carli, D. Bailey, M. Farias, and S. K. Mitra, “Error control and concealment for video transmission using data hiding,” in Proc. of IEEE Int. Symposium on Wireless Personal Multimedia Communications, Oct. 2002, vol. 2, pp. 812-815.
[116]C. B. Adsumilli, M. Farias, M. Carli, and S. K. Mitra, “A hybrid constrained unequal error protection and data hiding scheme for packet video transmission,” in Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, April 2003, vol. 5, pp. 680-683.
[117]A. Yilmaz and A. A. Alatan, “Error concealment of video sequences by data hiding,” in Proc. of IEEE Int. Conf. on Image Processing, Barcelona, Spain, Sept. 2003, pp. 679-682.
[118]W. Zeng, “Spatial-temporal error concealment with side information for standard video codecs,” in Proc. of IEEE Int. Conf. on Multimedia and Expo, Baltimore, Maryland, USA, July 2003, pp. 113-116.
[119]B. Girod and N. Farber, “Feedback-based error control for mobile video transmission,” Proceedings of the IEEE, vol. 87, no. 10, pp. 1707-1723, Oct. 1999.
[120]H. Liu and M. E. Zarki, “Performance of H.263 video transmission over wireless channels using hybrid ARQ,” IEEE Journal on Selected Areas in Communications, vol. 15, no. 9, pp. 1775-1786, Dec. 1997.
[121]J. T. Wang and P. C. Chang, “Error-propagation prevention technique for real-time video transmission over ATM networks,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 9, no. 3, pp. 513-523, April 1999.
[122]P. C. Chang and T. H. Lee, “Precise and fast error tracking for error-resilient transmission of H.263 video,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 10, no. 4, pp. 600-607, June 2000.
[123]T. Stockhammer, H. Jenkac, and C. Wei “Feedback and error protection strategies for wireless progressive video transmission,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 12, no. 6, pp. 465-482, June 2002.
[124]C. Zhu, X. Lin and L. P. Chau, “Hexagon-based search pattern for fast block motion estimation,” IEEE Trans. On Circuits and Systems for Video Technology, vol. 12, no. 5, pp. 349-655, May 2002.
[125]W. Kwok and H. Sun, “Multi-directional interpolation for spatial error concealment,” IEEE Trans. on Consumer Electronics, vol. 39, no. 3, pp. 455-460, Aug. 1993.
[126]S. Byun, J. Byun and G. Kim, “A recursive approach for de-interlacing using improved ELA and motion compensation based on bi-directional BMA,” in Proc. of 2004 Int. Conf. on Image Processing, Oct. 2004, pp. 1679-1682.
[127]T. Doyle, “Interlaced to sequential conversion for EDTV applications,” in Proc. 2nd Int. Workshop Signal Processing of HDTV, pp. 412-430, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top