跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 14:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃耀民
研究生(外文):Yao-Min Huang
論文名稱:使用於H.264視訊之整合式區塊效應消除濾波器設計
論文名稱(外文):Hybrid Deblocking Filter for H.264 Video
指導教授:柳金章柳金章引用關係
指導教授(外文):Jin-Jang Leou
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:72
中文關鍵詞:濾波方塊
外文關鍵詞:blockingartifactdct
相關次數:
  • 被引用被引用:0
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現有的視訊壓縮標準通常使用以區塊離散餘弦轉換(DCT)及動態補償預測(MCP)以去除空間及時序上的重複資訊。在低位元率下,高度量化的DCT係數在轉回空間域後容易在區塊邊界處發生不連續現象(區塊效應),而動態補償預測則可能將此不連續現象擴散到區塊內部,而使偵測變得困難。
因動態補償預測引起的區塊效應可使用迴路濾波器解決,它是一種整合於編解碼器內部的濾波器,濾波後的影像會被用於預測。惟迴路濾波器較不具彈性,使用者無法自由決定是否開啟之,而受限於所接收到的檔案。在本研究中,我們提出了新的後處理濾波器來解決此問題。
為了估測區塊內部的不連續現象,我們使用了動態補償的方式,所有檢測出的區塊現象位置都會被暫存。結合移動向量和先前視訊影像中檢測出的區塊現象位置,將可以正確估測出區塊內部不連續現象可能的發生位置,配合具方向性的區塊效應偵測及濾波,可以後處理濾波器實現迴路濾波器的效能。所提的方法可以使用於H.264及其他以DCT及MCP為編碼基礎的各種視訊。
Most video coding standards use block-based discrete cosine transform (DCT)and motion-compensated prediction (MCP) to reduce both spatial redundancy andtemporal. For very low bit rate coding, coarse-quantized DCT coefficients suffer discontinuities at block boundaries, namely blocking artifact, after reverse transform. Furthermore, motion-compensated prediction propagates blocking artifacts to inner-block regions, which makes artifact detection difficult.
Blocking artifacts caused by motion-compensated prediction can be solved by a loop-filter, which is integrated to the codec and filtered frames are used as reference frames. The main drawback of loop-filter is its in-flexibility, i.e., users cannot enable/disable filtering freely but restricted by the received bitstream. In this study, a hybrid deblocking filter for H.264 video is proposed.
To estimate inner-block discontinuities, a motion-compensated based approach is proposed. A map of detected blocking artifacts within each video frame is stored. Combining motion vectors and blocking artifact maps of previous frames, possible locations where blocking artifacts may occur can be estimated. Cooperating with oriented blocking artifact detecting and filtering, we successfully realize loop-filter performance with a post-filter. The proposed approach can also used in other DCT/MCP based codecs.
摘 要.............................................................................................................................i
ABSTRACT .................................................................................................................ii
ACKNOWLEDGMENTS..........................................................................................iv
TABLE OF CONTENTS............................................................................................v
LIST OF FIGURES...................................................................................................vii
LIST OF TABLES.....................................................................................................xii
CHAPTER 1 INTRODUCTION.............................................................................1
1.1 Motivation...................................................................................................1
1.2 Survey of Related Researches.....................................................................3
1.3 Overview of Proposed Approach................................................................9
1.4 Thesis Organization ..................................................................................10
CHAPTER 2 H.264 VIDEO COMPRESSION STANDARD AND ITS
DEBLOCKING FILTER TECHNIQUES ...................................11
2.1 H.264 Video Compression Standard ........................................................11
2.1.1 Overview of H.264 video..................................................................11
2.1.2 H.264 video compression techniques ...............................................11
2.1.3 Syntax and data organization of H.264 video...................................17
2.2 Deblocking Filter Process .........................................................................25
CHAPTER 3 PROPOSED HYBRID DEBLOCKING FILTER FOR H.264
VIDEO .............................................................................................29
3.1 Architecture...............................................................................................29
3.2 Orientation ................................................................................................30
3.3 Blocking Detection ...................................................................................33
3.4 Motion Compensation...............................................................................37
- vi-
3.5 Filtring.......................................................................................................39
3.5.1 Filtering for Bs=0..............................................................................40
3.5.2 Filtering for Bs=1..............................................................................41
CHAPTER 4 SIMULATION RESULTS.............................................................44
4.1 Blocking Detection Precision....................................................................45
4.2 Subjective Quality .....................................................................................48
4.2.1 Intra-coded frame deblocking performance comparison..................48
4.2.2 Inter-coded frame deblocking performance comparison..................54
4.2.3 Detailed View ...................................................................................60
4.2.4 Compared to H.264 Loop Filter........................................................60
4.3 Objective Quality ......................................................................................61
4.4 Processing Time ........................................................................................64
CHAPTER 5 DISCUSSIONS AND CONCLUSIONS........................................65
5.1 Discussions................................................................................................65
5.2 Conclusions...............................................................................................66
REFERENCES..........................................................................................................67
[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Reading,
Massachusetts: Addison-Wesley, 1992.
[2] A. M. Tekalp, Digital Video Processing, Upper Saddle River, New Jersey:
Prentice-Hall, 1995.
[3] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression,
Boston: Kluwer Academic Publishers, 1992.
[4] R. Walker and K. R. Rao, “Motion-Compensated coder,” IEEE Trans. on
Commu., Vol. COM-35, No. 11, pp. 1171-1178, 1987.
[5] D. LeGall, “MPEG: a video compression standard for multimedia
applications,” Commu. of the ACM, Vol. 34, No. 4, pp. 46 -58, 1991.
[6] ISO/IEC JTC1/SC29 WG11/602: Coding of moving pictures and associated
audio, Recommendation H.262, 1993.
[7] ISO/ICE JTC1/SC29/WG11 N1410, Coding of moving pictures and audio
(MPEG 96, MPEG-4), Oct. 1996.
[8] Advanced video coding for generic audiovisual services, ITU-T
Recommendation H.264, Mar. 2005.
[9] H. S. Malvar and D. H. Staelin, “The LOT: transform coding without
blocking effects,” IEEE Trans. on Acoustics, Speech, and Signal Process.,
Vol. 37, No. 4, pp. 553-557, April 1989.
[10] Z. Xiong, M. T. Orchard, and Y. Q. Zhang, “A deblocking algorithm for
JPEG compressed image using overcomplete wavelet representations,” IEEE
Trans. on Circuits and Systems for Video Tech., Vol. 7, No. 2, pp. 433-437,
April 1997.
[11] H. C. Reeve and J. S. Lim, “Reduction of blocking effects in image coding,”
Optical Engineering, Vol. 23, No. 1, pp. 34-37, 1984.
[12] W. Dai, L. Liu, and T. D. Tran, “Adaptive block-based image coding with
pre-/post-filtering,” in Proc. of IEEE conf. Data Compression., 2005, pp. 73-
82
[13] T. Jarske, P. Havisto, and I. Def’ee, “Post-filtering methods for reducing
blocking effects from coded images,” IEEE Trans. on Consumer Electronics,
Vol. 40, No. 3, pp. 521-526, 1994.
[14] S. C. Hsia, J. F. Yang, and B. D. Liu, “Efficient postprocessor for blocky
effect removal based on transform characteristics,” IEEE Trans. on Circuits
and Systems for Video Tech., Vol. 7, No. 6, pp. 924-929, December 1997.
[15] B. Ramamurthi and A. Gersho, “Nonlinear space-variant postprocessing of
block coded images,” IEEE Trans. on Acoustics, Speech, and Signal Process.,
Vol. ASSP-34, No. 5, pp. 1258-1267, 1986.
[16] F. J. Chu and C. L. Yeh, “Reduction of blocking artifacts using motion
compensated spatial-temporal filtering,” SPIE, Vol. 1452, Image Process.
Algo. and Tech., pp. 38-46 1991.
[17] Y. F. Hsu and Y. C. Chen, “A new adaptive separable median filter for
removing blocking effects,” IEEE Trans. on Consumer Electronics, Vol. 39,
No. 3, pp. 510-513, 1993.
[18] C. J. Kuo and R. J. Hsieh, “Adaptive postprocessor for block encoded
images,” IEEE Trans. on Circuits and Systems for Video Tech., Vol. 5, No. 4,
pp. 298-304, 1995.
[19] C. Avril and T. Nguyen-Trong, “Linear filtering for reducing blocking
effects in orthogonal transform image coding,” J. Electron. Imaging, Vol. 1,
pp. 183-191, Apr. 1992.
[20] D. G. Sampson, D. V. Papadimitriou, and C. Chamzas, “Post-processing of
block-coded images at low-bit rates,” in Proc. of IEEE Int. Conf. Image
Process., Lausanne, Switerland, 1996, Vol. 2, pp. 1-4.
[21] C. Derviaux, F. X. Coudoux, M. G. Gazalet, and P. Corlay, “Blocking
artifact reduction of DCT coded image sequences using a visually adaptive
postprocessing,” in Proc. of IEEE Int. Conf. Image Process., Lausanne,
Switerland, 1996, Vol. 2, pp. 5-8.
[22] H. C. Kim and H.W. Park, “Signal adaptive postprocessing for blocking
effects reduction in JPEG image,” in Proc. of IEEE Int. Conf. Image Process.,
Lausanne, Switerland, 1996, Vol. 2, pp. 41-44.
[23] R. Castagno and J. Andrei-Villaroel, “A spline-based adaptive filter for the
removal of blocking artifact in image sequences coded at very low bitrate,”
in Proc. of IEEE Int. Conf. Image Process., Lausanne, Switerland, 1996, Vol.
2, pp. 45-48.
[24] Y. L. Lee, H. C. Kim, and H. W. Park, “Blocking effect reduction of JPEG
images by signal adaptive filtering,” IEEE Trans. on Image Process., Vol. 7,
No. 2, pp. 229-234, February 1998.
[25] A. Zakhor, “Iterative procedures for reduction of blocking effects in
transform image coding,” IEEE Trans. on Circuits and Systems for Video
Tech., Vol. 2, No. 1, pp. 91-95, 1992.
[26] S. J. Reeves and S. L. Eddins, “Comments on “Iterative procedure for
reduction of blocking effects in transform image coding”,” IEEE Trans. on
Circuits and Systems for Video Tech., Vol. 3, No. 6, pp. 439-440, 1993.
[27] S. W. Hong, Y. H. Chan, and W. C. Siu, “The neural network modelled
POCS method for removing blocking effect,” in Proc. of IEEE Int. Conf.
Neural Network, Perth, WA, Australia, 1995, Vol. 3, pp. 1422-1425.
[28] Y. K. Lai, J. Li, and C. J. Kuo, “Image enhancement for low bit-rate JPEG
and MPEG coding via postprocessing,” SPIE, Vol. 2727, pp. 1485-1494,
1996.
[29] J. D. McDonnell, R. N. Shorten, and A. D. Fagan, “An edge classification
based approach to the post-processing of transform encoded images,” in Proc.
of ICASSP, 1994, Vol. 5, pp. 329-332.
[30] W. E. Lynch, A. R. Reibman, and B. Liu, “Post processing transform coded
images using edges,” in Proc. of ICASSP, 1995, Vol. 4, pp. 2323-2326.
[31] H. Jiwu, “Adaptive filtering of block effects based on edge map,” in Proc. of
IEEE Int. Conf. Signal Process., Beijing, China, 1996, Vol. 1, pp. 583-586.
[32] T. Ozcelik, J. C. Brailean, and A. K. Katsaggelos, “Image and video
compression algorithms based on recovery techniques using mean field
annealing,” Proc. of the IEEE, Vol. 83, No. 2, pp. 304-316, 1995.
[33] Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos, “Regularized
reconstruction to reduce blocking artifacts of block discrete cosine transform
compressed images,” IEEE Trans. on Circuits and Systems for Video Tech.,
Vol. 3, No. 6, pp. 421-432, 1993.
[34] Y. Q. Zhang, R. L. Pickholtz, and M. H. Loew, “A new approach to reduce
the “blocking effect” of transform coding,” IEEE Trans. on Commu., Vol. 41,
No. 2, pp. 299-302, 1993.
[35] S. Minami and A. Zakhor, “An optimization approach for removing blocking
effects in transform coding,” IEEE Trans. on Circuits and Systems for Video
Tech., Vol. 5, No. 2, pp. 74-82, 1995.
[36] Y. Nakajima, H. Hori, and T. Kanoh, “A pel adaptive reduction of coding
artifacts for MPEG video signals,” in Proc. of ICIP-94, 1994, Vol. 2, pp.
928-932.
[37] K. N. Ngan, D. Chai, and A. Millin, “Very low bit rate video coding using
H.263 coder,” IEEE Trans. on Circuits and Systems for Video Tech., Vol. 6,
No. 3, pp. 308-312, 1996.
[38] V. Ramamoorthy, “Removal of “staircase” effects in coarsely quantized video
sequences,” in Proc. of ICASSP, 1992, Vol. 3, pp. 309-312.
[39] D. E. Goldberg, Genetic Algorithms: Search, Optimization and Machine
Learning. Reading, Massachusetts: Addison-Wesley, 1989.
[40] H. C. Hsieh, "Computational networks for curve, surface, and image
interpolation by variational principle," Ph.D. Thesis, National Chiao Tung
University, Hsinchu, Taiwan, Republic of China, 1992.
[41] R. R. Schultz and R. L. Stevenson, "Extraction of high-resolution frames
from video sequences," IEEE Trans. on Image Processing, Vol. 5, No. 6, pp.
996-1011, 1996.
[42] G. Winter, J. P'eriaux, M. Gal'an, and P. Cuesta (Eds.), Genetic Algorithms
in Engineering and Computer Science. Chichester, West Sussex, England:
John Wiley & Sons, 1995.
[43] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, New York: Springer-Verlag, 1992.
[44] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design, New
York: John Wiley & Sons, 1997.
[45] J. H. Holland, “Genetic algorithms,” Scientific American, Vol. 267, No. 1, pp.
66-72, 1992.
[46] L. Davis (Ed.), Genetic Algorithms and Simulated Annealing, London:
Pitman Publishing, 1987.
[47] W. Siedlecki and J. Sklansky, “A note on genetic algorithms for large-scale
feature selection,” Pattern Recognition Letters, Vol. 10, pp. 335-347, 1989.
[48] G. Syswerda, “Uniform crossover in genetic algorithm,” in Proc. 3rd Int.
Conf. on Genetic Algorithms, 1989, pp. 2-9.
[49] H. Muhlenbein, “Parallel genetic algorithms, population genetics and
combinatorial optimization,” in Proc. 3rd Int. Conf. on Genetic Algorithms,
1989, pp. 416-421.
[50] F. Menczer and D. Parisi, “Evidence of hyperplanes in the genetic learning
of neural networks,” Biological Cybernetics, Vol. 66, pp. 283-289, 1992.
[51] N. Shimamoto, A. Hiramatu, and K. Yamasaki, “A dynamic routing control
based on a genetic algorithm,” in Proc. 1993 FUZZ-IEEE, 1993, pp. 1123-
1128.
[52] B. Bhanu, S. Lee, and J. Ming, “Adaptive image segmentation using a
genetic algorithm,” in Proc. Image Understanding Workshop, 1989, pp.
1043-1055.
[53] J. M. Fitzpatrick, J. J. Grefenstette, and D. Van Gucht, “Image registration
by genetic search,” in Proc. of IEEE Southeast Conference, 1984, pp. 460-
464.
[54] C. A. Ankerbrandt, B. P. Unckles, and F. E. Petry, “Scene recognition using
genetic algorithms with semantic nets,” Pattern Recognition Letters, Vol. 11,
pp. 285-293, 1990.
[55] D. Bhandari, S. K. Pal, and M. K. Kundu, “Image enhancement
incorporating fuzzy fitness function in genetic algorithms,” in Proc. 1993
FUZZ-IEEE, 1993, pp. 1408-1413.
[56] M. K. Kundu and S. K. Pal, “Automatic selection of object enhancement
operator with quantitative justification based on fuzzy set theoretic
measures,” Pattern Recognition Letters, Vol. 11, pp. 811-829, 1990.
[57] L. S. Hsu and Z. Wu, “Chinese character prediction by recurrent network,”
Computer Processing of Chinese and Oriental Languages, Vol. 6, No. 2, pp.
179-194, 1992.
[58] H. C. Lin, “Content-based image retrieval by color, texture, and shape,”
Ph.D. Thesis, National Tsing Hua University, Hsinchu, Taiwan, Republic of
China, 1997.
[59] R. M. Haralick, et al., “Texture features for image classification,” IEEE
Trans. on Systems, Man, and Cybernetics, Vol. 3, No. 6, pp. 610-621, 1973.
[60] R. M. Haralick, “A measure of circularity of digital figures,” IEEE Trans. on
Systems, Man, and Cybernetics, Vol. 4, pp. 394-396, 1974.
[61] R. M. Haralick, “Statistical and structural approaches to texture,” Proc. of
the IEEE, Vol. 67, No. 5, pp. 786-804, 1979.
[62] M. Nadler and E. P. Smith, Pattern Recognition Engineering, New York:
John Wiley & Sons, 1993.
[63] C. M. Liu, J. Y. Lin, K. G. Wu, and C. N. Wang, “Objective image quality
measure for block-based DCT coding,” IEEE Trans. on Consumer
Electronics, Vol. 43, No. 3, pp.511-516, 1997.
[64] C. H. Chou and Y. C. Li, “A perceptual tuned subband image coder based on
the measure of just-noticeable-distortion profile,” IEEE Trans. on Circuits
and Systems for Video Tech., Vol. 5, No. 6, pp. 467-476, 1995.
[65] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz, “Adaptive
deblocking filter,” IEEE Trans. on Circuits and Systems for Video Tech., Vol.
13, No. 7, pp. 614-619, 2003.
[66] A. Rossholm and K. Andersson, “Adaptive de-blocking de-ringing post
filter,” in Proc. IEEE Int. Conf. Image Process., 2005, Vol. 2, pp. 1042-1045.
[67] M. Yuen and H. R. Wu, “A survey of hybrid MC/DPCM/DCT video coding
distortions,” Signal Processing, Vol. 70, pp. 247-278, July 1998.
[68] A. Leontaris, P. C. Cosman, and A. R. Reibman, “Measuring the added high
frequency energy in compressed video” in Proc. IEEE Int. Conf. Image
Process., 2005, Vol. 2, pp. 498-501
[69] A. Z. Averbuch, A. Schclar, and D. L. Donoho, “Deblocking of blocktransform
compressed images using weighted sums of symmetrically aligned
pixels,” IEEE Trans. on Image Process. Vol. 14, No. 2, pp. 200-212, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top