跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏藩東
研究生(外文):Fan-tung Wei
論文名稱:以區塊為基礎之物件追蹤技術結合以Adaboost為基礎之特徵選擇
論文名稱(外文):A Region-based Object Tracking Method Using AdaBoost-based Feature Selection
指導教授:林嘉文林嘉文引用關係
指導教授(外文):Chia-wen Lin
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:94
語文別:英文
論文頁數:55
中文關鍵詞:k-means clusteringseed featuresAdaboost
外文關鍵詞:k-means clusteringseed featuresAdaboost
相關次數:
  • 被引用被引用:0
  • 點閱點閱:944
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在提供使用者一個更精準標示目標的需求下,我們提出了一個整合式的物件追蹤系統。該系統是透過兩個不同的追蹤器而達到追蹤效果:其一是透過Adaboost結合像素為基底的種子特徵(seed features)來達到追蹤;透過這個追蹤器能夠精準地標示出追蹤目標。另一則是透過雙向K-means clustering的方法,輔以Adaboost結合以區塊為基礎的種子特徵來達到追蹤,並補足第一個追蹤器的不足。另外我們提供了讓使用者可以修正追蹤結果的工具;而透過所設計的可信指數量測,可以讓使用者輕鬆地決定是否該人工介入修正追蹤結果,例如是因為遮蔽事件發生或其他複雜情況發生的結果。
We proposed an integrated tracking system for applications which need more precise segmentation of target. The main tracking mechanism is accomplished by two trackers. The first tracker performs tracking by Adaboost on pixel-based seed features; it can provide more detailed segmentation of target. The second tracker achieves tracking by bidirectional k-means clustering on regions, and uses Adaboost on region-based seed features to provide compensations to the short the first tracker. We also implement a tool which allows users to refine the result manually. By confidence measure, users can easily choose the timing to interact with frames which probably are in occlusion or perform poorly due to some complex situation.
Content
Abstract 1
摘 要 iv
Content v
Chapter 1. Introduction 1
1.1. Tracking Issues 1
1.2. Target Representation 2
1.3. Feature Selection 3
1.4. Motivation 4
Chapter 2. Related Work and Background 5
2.1. Seed features 6
2.2. Adaboost 7
2.3. K-Means Clustering 9
Chapter 3. Proposed Method 11
3.1. Global-viewed Tracker 13
3.2. Local-viewed Tracker 20
3.2.1. Regionalization 21
3.2.2. Object Tracking with K-Means Clustering 25
3.2.3. Region-based Seed features 26
3.2.4. Region-Relation Judgment 27
3.3. Manual-Refinement Tool 28
3.4. Final Combination 30
3.4.1. Post-Process: Morphological Operations 30
3.4.2. Confidence Measurement 30
Chapter 4. Experimental Results 31
Chapter 5. Conclusion and Future Work 50
Reference 52
[1]Robert T. Collins, Yanxi Liu, and Marius Leordeanu, “Online Selection of Discriminative Tracking Features,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1631-1643, October 2005.
[2]Chunsheng Hua, Haiyauan Wu, Qian Chen, and Toshikazu Wada, “A Pixel-wise Object Tracking Algorithm with Target and Background Sample,” in Proc. of IEEE International Conference on Pattern Recognition, pp. 739-742, September 2006.
[3]Robi Polikar, “Ensemble Based Systems in Decision Making,” IEEE Circuits and Systems Magazine, Third Quarter, 2006.
[4]Shai Avidan, “Ensemble Tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 2, pp. 261-271, February 2007.
[5]Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum, “Lazy Snapping,” ACM Transactions on Graphics, vol. 23, no. 3, pp. 303-308, August 2004.
[6]Karthik Hariharakrishnan and Dan Schonfeld, “Fast Object Tracking Using Adaptive Block Matching,” IEEE Transactions on Multimedia, vol. 7, no. 5, pp. 853-859, October 2005.
[7]Paul Viola, and Michael Jones, “Rabid Object Detection using a Boosted Cascade of Simple Features,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511-518, 2001.
[8]Norimichi Ukita, “Target-color Learning and Its Detection for Non-stationary Scenes by Nearest Neighbor Classification in the Spatio-Color Space,” IEEE Conference on Advanced Video and Signal Based Surveillance, September 2005, pp. 394-399.
[9]Tao Zhao and Ram Nevatia, “Tracking Multiple Humans in Crowded Environment,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 406-413, July 2004.
[10]Tao Zhao and Ram Nevatia, “Tracking Multiple Humans in Complex Situations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1208-1221, September 2004.
[11]Ying Wu, Ting Yu, and Gang Hua, “Tracking Appearances with Occlusions,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 789-795, 2003.
[12]Changjiang Yang, Ramani Duraiswami, and Larry Davis, “Fast Multiple Object Tracking via a Hierarchical Particle Filter,” in Proceedings of IEEE International Conference on Computer Vision, vol. 1, pp. 212-219, 2005.
[13]Zia Khan, Tucker Balch, and Frank Dellaert, “MCMC-Based Particle Filtering for Tracking a Variable Number of Interacting Targets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 11, pp. 1805-1819, November 2005.
[14]Oswald Lanz, “Approximate Bayesian Multibody Tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 9, pp. 1436-1449, September 2006.
[15]Shai Avidan, “Support Vector Tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 8, pp. 1064-1072, August 2004.
[16]Alper Yilmaz, Omar Javed, and Mubarak Shah, “Object Tracking: A Survey,” ACM Computing Surveys, vol.38, no.4, article 13, December 2006.
[17]Wen-Han Yao and Sheng-Jyh Wang, “Mean-Shift Object Tracking Based on a Multi-Blob Model,” in Proceedings of Computer Vision, Graphics, and Image Processing Conference, August 2006.
[18]Joshua Migdal, Tomas Izo, and Chris Stauffer, “Moving Object Segmentation using Super-Resolution Background Models”, Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras, October 2005.
[19]Sangho Park and J. K. Aggarwal, "Segmentation and tracking of interacting human body parts under occlusion and shadowing," in Proceedings of Workshop on Motion and Video Computing, pp. 105-111, December 2002.
[20]Changick Kim and Jenq-Neng Hwang, "Fast and Automatic Video Object Segmentation and Tracking for Content-Based Applications", in Proceedings of IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, no. 2, February 2002.
[21]Jian Zhou and Xiao-Ping Zhang, "Video Object Segmentation and Tracking Using Probabilistic Fuzzy C-Means," in Proceedings of IEEE Workshop on Machine Learning for Signal Processing, pp. 201-206, September 2005.
[22]Karthik Hariharakrishnan and Dan Schonfeld, "Fast object tracking using adaptive block matching," in Proceedings of IEEE Transactions on Multimedia, vol.7, no.5, pp. 853-859, October 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top