(3.236.82.241) 您好!臺灣時間:2021/04/13 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏牧得
研究生(外文):Muh-Dey Wei
論文名稱:可重置頻寬之DC-250MHz可變增益放大器設計
論文名稱(外文):Design of Bandwidth-Reconfigurable DC-250MHz Programmable Gain Amplifier
指導教授:張盛富
指導教授(外文):Sheng-Fuh Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:65
中文關鍵詞:超寬頻可變增益放大器
外文關鍵詞:MB-OFDM UWBPGA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:86
  • 收藏至我的研究室書目清單書目收藏:0
本論文設計可重置頻寬之DC-250MHz可變增益放大器。其頻寬分成25MHz與250MHz兩段由數位控制,其增益亦可由數位控制。
本論文使用轉導級與電流回授放大器的方式達到控制增益與頻寬。另外,高織T電流鏡設計增加電路織T,並設計了串列轉並列的數位電路,方便控制本晶片。在25MHz頻寬時,量測的增益可變範圍為30.56dB,消耗必v為5.8mW,在250MHz頻寬時,量測的增益可變範圍為19.86dB,消耗必v為6.9mW。輸出訊號為1Vpp時,波形失真為-61dB,電路設計的負載電容為0.5pF。本晶片適用於IEEE 802.11a/b/g和MB-OFDM UWB兩種無線寬頻規格,可節省必v消耗以及降低晶片面積,降低整體電路成本。
This thesis designs a bandwidth-reconfigurable DC-250MHz programmable gain amplifier for IEEE 802.11a/b/g and multi-band orthogonal-frequency-division-multiplexing Ultra-Wideband (MB-OFDM UWB) systems.
PGA uses a switched-gm CMOS gain stage and a current feedback amplifier to control bandwidth and gain. It consumes 5.83 mW and has a voltage gain range of 30.56 dB when operating in 25MHz-bandwidth mode. It consumes 6.87 mW and has a voltage gain range of 19.86 dB in the 250MHz-bandwidth mode. The distortion is better than -60dB for 1Vpp output signal.
第一章 緒論 1
1.1 研究背景與動機 1
1.2 相關文獻探討 3
1.3 論文綱要 3
第二章 基頻可變增益放大器設計原理 4
2.1 可變增益的機制 6
2.1.1 源極退化式 (Source Degeneration) 6
2.1.2 放大器切換回授電阻 7
2.1.3 轉導級切換與電流回授放大器 8
2.2 放大器電路 9
2.2.1 基本放大電路類型 10
2.2.2 共模排斥(CMRR) 與供應電壓排斥(PSRR) 16
2.2.3 共模回授電路 (Common Mode Feedback Circuit) 19
2.2.4 雜訊 20
第三章 DC-250 MHz頻寬之可變增益放大器 24
3.1 電路架構分析 24
3.1.1 高速全差動放大器電路 25
3.1.2 電阻切換陣列 27
3.2 設計流程 30
3.3 模擬結果與晶片佈局 30
3.4 量測考量與結果 33
3.5 結果討論 39
第四章 可重置頻寬之可變增益放大器 40
4.1 電路架構分析 40
4.1.1 GM級與電流放大器 41
4.1.2 電阻切換陣列 44
4.1.3 串列轉並列介面(Serial Peripheral Interface, SPI) 45
4.2 設計流程 47
4.3 模擬結果與晶片佈局 47
4.4 量測考量與結果 51
4.5 結果討論 59
第五章 結論 60
參考文獻 61
附錄A Agilent 1160 Series Oscilloscope Probes 64
[1]ANSI/IEEE Std 802.11, Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 1999.
[2]IEEE Std 802.11a/D7.0, Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5 GHz Band, 1999.
[3]IEEE Std 802.11b, Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-speed Physical Layer Extension in the 2.4 GHz Band, 1999.
[4]IEEE P802.11g/D8.2, Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Further Higher Data Rate Extension in the 2.4 GHz Band, Apr. 2003.
[5]IEEE 802.15, WPAN High Rate Alternative PHY Task Group 3a(TG3a), Available at http://www.ieee802.org/15/pub/TG3a.html.
[6]MultiBand OFDM Aliance SIG, MultiBand OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a.
[7]IEEE 802.15, Multi-band OFDM Physical Layer Proposal
[8]IEEE 802.15, XtremeSpectrum CFP Presentation.
[9]K. Siwiak and D. McKeown, Ultra-Wideband Radio Technology, John Wiley & Son, Ltd., 2004
[10]J. M. Khoury, “On the Design of Constant Settling Time AGC Circuits,” IEEE Transactions on Circuits and System, vol. 45, pp.283-294, Mar. 1998.
[11]J.J.F. Rijins, “CMOS Low-Distortion High-Frequency Variable-Gain Amplifier,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 1029-1034, Jul. 1996.
[12]K. Philips and E. C. Dijkmans, “A variable-gain IF amplifier with -67 dBc IM3-distortion at 1.4VPP output in 0.25μm CMOS,” in Symp. VLSI Circuits Digest Technical Papers, 2001, pp.81-82.
[13]C. C. Hsu and J. T. Wu, “A Highly Linear 125-Mhz CMOS Switched-Resistor Programmable-Gain Amplifier,” IEEE J. Solid-State Circuits, vol. 38, pp.1633-1670, Oct. 2003.
[14]H. Dinc, P. E. Allen, S. Chakraborty, “A Low Distortion, Current Feedback, Programmable Gain Amplifier,” IEEE International Symposium On Circuits and Systems, vol.5, 2005, pp. 4819-4822.
[15]A. T. Sanz, S. Cehna, B. Calvo, “High Linear Digitally Programmable Gain Amplifier,” IEEE International Symposium On Circuits and Systems, vol.1, 2005, pp. 208-211.
[16]B. Calvo, S. Celma, P. A. Martinez, M. T. Sanz, “1.8V-0.35μm CMOS Wideband Programmable Gain Amplifier,” Proceedings of the 2005 European Conference on Circuit Theory and Design, vol. 1, 2005, pp. 35-38.
[17]B. Razavi, RF Microelectronics, Prentice Hall, 1998
[18]R. J. Baker, CMOS Circuit Design, Layout, and Simulation, IEEE Press, 2005.
[19]B. Razavi, Design of Analog CMOS Integrated Circuit, McGraw-Hill, 2001.
[20]PIC16F877 Datasheet, Microchip Technology Inc., 2005.
[21]盧春林,PIC16F87X微處理器技術精解,標高電腦股份有限公司,2001.
[22]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 1998.
[23]H. T. Friis, “Noise Figure of Radio Receivers,” Proc. IRE, Vol. 32, pp. 419-422, July 1944.
[24]M. Mostafa, H.Elwan, A. Bellaour, B. Kramer and S. H. K. Embabi, “A 110MHz 70dB CMOS variable gain amplifier”, Proc. IEEE Int. Symposium on Circuits and Systems, vol. 2, pp. 628-631, 1999.
[25]R. Meyer, P.Gray, Analog CMOS Intergrated Circuits, New York: Wiley, 2001.
[26]張盛富、戴明鳳,無線通訊之射頻被動電路設計,全華科技圖書股份有限公司,1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔