(3.227.235.183) 您好!臺灣時間:2021/04/13 10:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭瑩慧
研究生(外文):Yng-Huey Jeng
論文名稱:具有多重零點微型帶通濾波器之分析與設計
論文名稱(外文):Analysis and Design of Miniaturized Bandpass Filters with Multiple Transmission-zeros
指導教授:張盛富
指導教授(外文):Sheng-Fuh Chang
學位類別:博士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:74
中文關鍵詞:映像參數理論.雙模環形共振器傳輸零點帶通濾波器
外文關鍵詞:transmission zerosbandpass filterMicrowavedual-mode ring resonator.image-parameter theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
本論文分析與設計具多重零點之微小型帶通濾波器。文章中提出兩種新類型的帶通濾波器。第一種類型是由鏡像濾波元所組成,由鏡像參數理論推導出傳輸電路特性和設計公式。當給定濾波器規格,即依據推導的公式求得各元件參數值,並利用數值電磁軟體進行微調。另一類型的帶通濾波器是由一種新型的自我耦合環形共振器所組成,此共振器利用環形線段的自我耦合及阻抗變化使模態分裂,取代傳統均勻環形共振器外加微擾方式,使共振頻率往低頻帶移動,更能縮減電路尺寸。本文將對其共振條件與傳輸零點的產生和分佈進行分析與討論。採用此新型的共振器設計帶通濾波器,其尺寸只有傳統環型共振器帶通濾波器的23%。上述兩種類型濾波器均進行實作,由量測數值驗證所提出理論的正確性。
This dissertation works on the analysis and design of miniaturized bandpass filters with controllable multiple transmission zeros for multi-band multimode wireless RF transceivers. Two new structures of bandpass filter are proposed and investigated. The first bandpass structure is composed of a cascade of enhanced m-derived filter cells and the second is composed of the self-coupled ring resonators. On the first bandpass structure, the image-parameter theory is employed to analyze the transmission-zero generation and to derive the element design equations. By substituting this set of element values into an electromagnetic simulator to include the layout and parasitic coupling effects, the prescribed bandpass specifications can be achieved. On the second bandpass structure, the self-coupled ring resonator brings the advantage of two transmission zeros generated by a single resonator. The effect of circuit parameters on the generation of transmission zero are thoroughly investigated, including the separation of input/output tapping locations, the impedance ratio, the coupling coefficients, and the coupling length of the ring. Both types of bandpass filter are implemented either with the low-temperature-cofired ceramic process or with the glass epoxy substrate. The measurement results confirm the distinct features of the proposed filter structures.
Chapter 1 Introduction 1
1-1 Research Motivation 1
1-2 Literature Survey 1
1-2-1 Bandpass Filter Synthesis by Insertion Loss Method 1
1-2-2 Bandpass Filter Synthesis by Image-Parameter Theory 2
1-2-3 Bandpass Filter Based on the Closed Ring Resonator 2
1-3 Thesis Outline 3

Chapter 2 Review of Image Parameter Synthesis Method 5
2-1 Image-Parameter Theory 5
2-2 Constant-k Filter Cells with Lowpass and Highpass Characteristic 6
2-3 Constant-k Filter Cells with Bandpass and Bandstop Characteristic 8
2-4 m-Derived Filter Cells with Lowpass and Highpass Characteristic 10
2-5 m-Derived Filter Cells with Bandpass Characteristic 13
2-6 Double-m-derived Asymmetrical Filter Cells with Bandpass
Characteristic 10
2-7 Five-Element m-Derived Asymmetrical Bandpass Filter Cells 17
2-7-1 Infinite Attenuation at DC Frequency 17
2-7-2 Infinite Attenuation at Infinite Frequency 18

Chapter 3 Bandpass Filter Design Based on the Image Parameter Method 20
3-1 Bandpass Filter Cell with Two Transmission Zeros 20
3-1-1 Filter Cell with Lumped Elements 21
3-1-2 Filter Cell with Hybrid of Lumped and Distributed Elements 23
3-1-3 Cascade of Filter Cells 25
3-2 Design of Bandpass Filter with Multiple Transmission Zeros 27
3-2-1 Circuit Element Estimation and Calculated Frequency
Response 27
3-2-2 LTCC layout 29
3-2-3 3D Electromagnetic Simulation for Including Substrate Losses
and Cross-layer Coupling 29
3-2-4 Measurement Results and Discussion 32
3-3 Summary 33

Chapter 4 Bandpass Filter Using Self-Coupled Ring Resonators 35
4-1 Resonance Mode 36
4-1-1 Resonance Conditions 36
4-1-2 Effect of Impedance Ratio 40
4-1-3 Effect of Coupling Coefficient 40
4-2 Transmission Zeros 44
4-3 Bandpass Filter Application 46
4-3-1 Initial Dimension Estimation 47
4-3-2 LTCC Layout 47
4-3-3 3D Electromagnetic Simulation 48
4-3-4 Measurement 48
4-4 Summary 51

Chapter 5 Parametric Control of Transmission-Zero Location of Self-coupled Ring Bandpass Filter 52
5-1 Governed Equations of Transmission-Zeros Locations 52
5-1-1 Effect of the Input-Output Separation Length 54
5-1-2 Effect of the Ended-Coupled Section Electric Length 55
5-1-3 Effect of the Self-Coupled Coefficient and 58
5-1-4 Effect of the Impedance Ratio 58
5-2 Bandpass Filter Application 62
5-2-1 Initial Dimension Estimation 62
5-2-2 3D Electromagnetic Simulation 62
5-2-3 Measurement 62
5-3 Summary 65

Chapter 6 Conclusion 67
[1]S. Wu and B. Razavi, “A 900-MHz/1.8-GHz CMOS receiver for dual-band applications,” IEEE J. Solid-State Circuits, vol. 33, pp. 2178-2185, Dec. 1998.
[2]J. Tham, M. Margrait, B. Pregardier, C. Hull, R. Magoon, and F. Carr, “A2.7V 900-MHz dual-band transceiver IC for digital wireless communications,” IEEE J. Solid-State Circuits, vol. 34, pp. 282-291, Mar. 1999.
[3]H. Hashemi and Ali Hajimiri, “Concurrent Multiband Low-Noise Amplifiers-Theory, Design, and Applications,” IEEE Trans. Microwave Theory and Tech., vol. 50, no. 1, pp. 288-301, Jan. 2002.
[4]S. F. Chang, W. L. Chen, S. C. Chang, C. K. Tu, C. L. Wei, C. H. Chien, C. H. Tsai, J. Chen, and A. Chen, “A Dual-Band RF Transceiver for Multi-Standard WLAN Applications,” IEEE Trans. Microwave Theory and Tech., vol. 50, no. 2, pp. 1048-1055, Feb. 2005.
[5]A. Sutono, J. Laskar and W.R. Smith, “Design of Miniature Multilayer On-Package Integrated Image-Reject Filters,” IEEE Trans. Microwave Theory and Tech., vol. 51, pp. 156 - 162, Jan. 2003.
[6]L. K. Yeung and K.-L. Wu, “A Compact Second-Order LTCC Bandpass Filter With Two Finite Transmission Zeros,” IEEE Trans. Microwave Theory and Tech., vol. 51, no. 2, pp. 337 - 341, Feb. 2003.
[7]W. Y. Leung, K.K.M. Cheng and Ke-Li Wu, “Multilayer LTCC bandpass filter design with enhanced stopband characteristics,” Microwave and Wireless Components Lett., vol. 12, pp. 240 - 242, Feb. 2003.
[8]J. S. Lim and D. C. Park, “A modified Chebyshev bandpass filter with attenuation poles in the stopband,” IEEE Trans. Microwave Theory and Tech., vol. 45, pp. 898–904, June 1997.
[9]R. E. Collin, Foundations for Microwave Engineering, McGraw-Hill, N. Y., 1966.
[10]J. A. G. Malherbe, Microwave Transmission Line Filters, Artech, House, Dedham, Mass., 1979.

[11]G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech, House, Dedham, Mass., 1980.
[12]David M. Pozer, Microwave Engineering, Addison-Wesley, 1993.
[13]C. W. Tang, “Harmonic-Suppression LTCC Filter With the Step-Impedance Quarter-Wavelength Open Stub,” IEEE Trans. Microwave Theory and Tech., vol. 52, pp. 617–624, Feb. 2004.
[14]K. Wada, I. Awai, "Design of a Bandpass Filter with Multiple Attenuation Poles Based on Tapped Resonators" IEICE Trans. Electron, vol. E82-C, no. 7, pp. 1116-1122, July 1999.
[15]T. E. Shea, Transmission Networks and Wave Filters. New York: D. Van Nostrand Company, Inc. 1930.
[16]M. Hasler and J. Neirynck, Electric Filters. Boston, MA: Artech, 1986.
[17]I. Wolff and N. Knoppik, “Microstrip ring resonator and dispersion measurements on microstrip lines,” Electron. Lett., vol. 7, no. 26, pp. 779-781, Dec. 1971.
[18]I. Wolff, “ Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,” Electron Lett., vol. 8, no. 12, pp. 302-303, June 1972.
[19]Morikazu Saguwa, Mitsuo Makimoto, and Sadahiko Yamashita, “Geometrical Structures and Fundamental Characteristics of Microwave Stepped-Impedance Resonators, ” IEEE Trans. Microwave Theory and Tech., vol. 45, no. 7, pp. 1078-1085, July 1997.
[20]M. Matsuo, H. Yabuki, and M. Makimoto, “Dual-mode stepped-impedance ring resonator for bandpass filter applications,” IEEE Trans. Microwave Theory and Tech., vol. 49, no. 7, pp. 1235-1240, July 2001.
[21]A. Gorur, “A novel dual-mode bandpass filter with wide stopband using the properties of microstrip open-loop resonator” IEEE Microwave and Wireless Component Lett., vol. 12, no. 10, pp. 386-388, Oct. 2002.
[22]A. Gorur, C. Karpuz, and M. Akpinar, “A reduced-size dual-Mode bandpass filter with capacitively loaded open-loop arms,” IEEE Microwave and Wireless Component Lett., vol. 13, no. 9, pp. 385-387, Sept. 2003.
[23]Lei Zhu, and Ke Wu, “A Joint Field/Circuit Model of Line-to-Ring Coupling Structures and Its Application to the Design of Microstrip Dual-Mode Filters and Ring Resonator Circuits,” IEEE Trans. Microwave Theory and Tech., vol. 47, no. 10, pp. 1938-1948, Oct. 1999.
[24]B. T. Tan, J. J. Yu, and S. T. Chew, “A miniaturized dual-mode ring bandpass filter with a new perturbation,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 1, pp. 343-348, Jan. 2005.
[25]A. Gorur, “Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter application,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 2, pp. 671-677, Feb. 2004.
[26]A. Görür, ”A Reduced-Size Dual-Mode Bandpass Filter With Capacitivity Loaded Open-Loop Arms,” IEEE Microwave Wireless Comp. Lett., vol. 13, pp. 385-387, Sept. 2003.
[27]G. Macchiarella, M. Fumagalli, and S. C. d’Oro, ”A New Coupling Structure for Dual Mode Dielectric Resonator,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 12, pp. 523-525, Dec. 2000.
[28]H. C. Chang and K. A. zaki, ”Evanescent-Mode Coupling of Dual-Mode Rectangular Waveguide Filters,” IEEE Trans. Microwave Theory and Tech., vol. 39, pp. 1307-1312, Aug. 1991.
[29]H. Yabuki, M. Sagawa, M. Matsuo and M. Makimoto, ”Stripline Dual-Mode Ring Resonators and Their Application to Microwave Devices,” IEEE Trans. Microwave Theory and Tech., vol. 44, no. 5, pp. 723-729, May 1996.
[30]L. H. Hsieh and K. Chang , ”Dual-Mode Quasi-Elliptic-Function Bandpass Filters Using Ring Resonators With Enhanced-Coupling Tuning Stubs,” IEEE Trans. Microwave Theory and Tech., vol. 50, no. 5, pp. 1340-1345, May 2002.
[31]L. H. Hsieh, K. Chang, “Compact, low insertion-loss, sharp-rejection, and wide-band microstrip bandpass filters,” IEEE Trans. Microwave Theory and Tech., vol. 51, no. 4, pp. 1241-1246, Apr. 2003.
[32]J. S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications. New York: John Wiley & Son, Inc. 2001.
[33]R. J. Cameron, “Advanced coupling matrix synthesis techniques for microwave filters,” IEEE Trans. Microwave Theory and Tech., vol. 51, pp. 1-10, Jan. 2003.
[34]S. Amari, U. Rosenberg, “Direct synthesis of a new class of bandstop filters with source-load coupling,” IEEE Microwave Wireless Comp. Lett., vol. 11, pp. 264–266, June 2001.
[35]L. H. Hsieh, K. Chang, “Dual-Mode Quasi-Elliptic-Function Bandpass Filter Using Ring Resonators with Enhanced-Coupling indeed Tuning Stubs.” IEEE Trans. Microwave Theory and Tech., vol. 50, no. 5, pp. 1340-1345, May 2002.
[36]J. S. Hong and M. J. Lancaster, “Compact microwave elliptic function filter using novel microstrip meander open-loop resonators,” Electron Lett., 32, pp.563-564, 1996.
[37]S. Amari, “Comments on “Description of Coupling Between Degenerate Modes of a Dual-Mode Microstrip Loop Resonator Using a Novel Perturbation Arrangement and Its Dual-Mode Bandpass Filter Applications,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 9, pp. 2190-2192, Sept. 2004.
[38]J. S. Hong and M. J. Lancaster, ”Microstrip bandpass filter using degenerate modes of a novel mender loop resonator,” IEEE Microwave and Guided Wave Lett., vol. 5, no. 11, pp. 371-372, Nov. 1995.
[39]Kurt F. Raihn, and Gregory L. Het-Shipton, “Folded Dual-Mode HTS Microstrip Band Pass Filter,” in 2002 IEEE MTT-S Int, Microwave Symp. Dig. Seattle, Washington, USA, vol. 3, pp. 1959-1962.
[40]X. D. Huang, and C. H. Cheng, “A Novel Coplanar-Waveguide Bandpass Filter Using A Dual-Mode Square-Ring Resonator,” IEEE Microwave and Wireless Component Lett., vol. 16, no. 1, pp. 13-15, Jan. 2006.
[41]Arun Chandra Kundu, and Ikuo Awai, “Control of Attenuation Pole Frequency of a Dual-Mode Microstrip Ring Resonator Bandpass Filter,” IEEE Trans. Microwave Theory and Tech., vol. 49, no. 6, pp. 1113-1117, June 2001.
[42]Yng-Huey Jeng, Chang, S.-F.R. and Hsiao-Kuang Lin, “A high stopband-rejection LTCC filter with multiple transmission zeros,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 2, pp. 633 – 638, Feb. 2006.
[43]Yng-Huey Jeng, Sheng-Fuh R. Chang, Yi-Ming Chen, and Yu-Jen Hung, “A Novel Self-Coupled Dual-Mode Ring Resonator and Its Application to bandpass filters,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 5, pp. 2146-2152, May 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔