跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭惟中
研究生(外文):Wei-Chung Cheng
論文名稱:超寬頻金氧半射頻接收器之前端電路設計
論文名稱(外文):The Design of Ultra-Wideband CMOS RF Receiver Front-End
指導教授:李順裕
指導教授(外文):Shuenn-Yuh Lee
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:122
中文關鍵詞:射頻接收器超寬頻
外文關鍵詞:RF ReceiverUltra- Wideband
相關次數:
  • 被引用被引用:1
  • 點閱點閱:821
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文主要是利用標準0.18µm CMOS 製程設計應用於超寬頻系統接收器前端,其中包含超寬頻低雜訊放大器、超寬頻降頻混頻器、超寬頻壓控振盪器。在超寬頻低雜訊放大器的設計中,除了應用窄頻低雜訊放大器所使用的源極電感回授方式,以及共閘極放大器所組成的疊接(cascade)架構,另外加入並聯式負迴授結構(Negative shunt feedback structure),此迴授將輸出電壓訊號回饋成電流訊號並且在輸入端提供低輸入組抗來達到50Ω阻抗匹配,也將原來的頻率響應方程式改變成具有寬頻因數的新函數,但不會造成太多額外必v消耗或是增益損失。在超寬頻降頻混頻器的設計中,我們利用LC階梯式匹配網路達到寬頻之阻抗匹配;因為LNA的輸出是單端的,所以設計了一個RF端為單端輸入而且LO端為差動平衡的混波器,至於Mixer core則是Gilbert Cell的MOS切換對。在超寬頻壓控振盪器的設計中,考量壓控振盪器所需具備的特性,選擇交互偶合結構(cross-coupled structure)式的振盪器,另外加入偶次諧波混頻器結構(Even Harmonic Mixer),因為偶次諧波混頻器可以將輸入訊號與其偶次諧波混波達到升頻效果,所以利用EHM來達到寬頻的效果。整個論文將分別探討各電路的設計與模擬,經由量測結果可證明所設計之電路可滿足UWB之電路數據要求。
This thesis aim is to design an ultra-wideband CMOS RF receiver front-end using standard 0.18um CMOS process. There are several RF components which include ultra-wideband low-noise amplifier, ultra-wideband down-conversion mixer, ultra-wideband voltage-controlled oscillators. In first components, we adopt the modified source L-degenerate technology and cascade structure in the design of ultra-wideband low-noise amplifier. Besides, we also designed an negative shunt feedback structure to improve frequency response. This structure can sense the output voltage and feed back a current signal to improve bandwidth. In addition, feedback structure provides a low input impedance, generating a 50-Ω real part for proper matching. Therefore, the narrowband frequency response can be converted into a new wideband function by the design of feedback structure. The addition of negative shunt feedback increase a little power consumption and gain loss . In second components, we use the LC ladder matching networks to achieve broadband in the design of ultra-wideband down-conversion mixer. Because the output port of LNA is single ended , a single ended input and double balanced mixer is also desirable. The mixer is based on the Gilbert transconductance multiplier cell. In third components, we employ the cross-coupled structure to design voltage-controlled oscillators. Besides, we also designed an even harmonic mixer to achieve broadband result by mixing the input signal with the even harmonic of the second input signal. In this paper, the design and analysis will be discussed in detail, respectively. Based on measured results, they will reveal the designed circuits can be fit the requirement of UWB receiver.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
附圖目錄 vi
表目錄 ix
第一章 緒論 - 1 -
1.1 研究動機 - 1 -
1.2 超寬頻概述 - 2 -
1.3 超寬頻的發展 - 4 -
1.4 超寬頻的特點 - 6 -
1.5 超寬頻的應用 - 7 -
第二章 射頻接收器前端 - 9 -
2.1 接收器簡介 - 9 -
2.2 外差式接收器 - 9 -
2.3 低中頻式接收器 - 13 -
2.4 零中頻式接收器 - 16 -
2.5 接收器的特性參數 - 19 -
2.5.1 靈敏度 - 20 -
2.5.2 雜訊 - 20 -
2.5.3 1DB壓縮點與動態範圍 - 22 -
2.5.4 互調失真 - 23 -
2.6 後端系統調變方式 - 25 -
第三章 低雜訊放大器設計 - 28 -
3.1 簡介 - 28 -
3.2 窄頻低雜訊放大器設計 - 28 -
3.2.1 輸入阻抗匹配 - 29 -
3.2.2 雜訊分析 - 31 -
3.2.3 雜訊推導 - 34 -
3.3 超寬頻低雜訊放大器設計 - 39 -
3.3.1 輸入阻抗匹配 - 41 -
3.3.2 增益與頻率響應 - 42 -
3.3.3 雜訊分析 - 45 -
3.4 設計流程與模擬結果 - 46 -
3.5 晶片量測結果與討論 - 51 -
第四章 混波器設計 - 55 -
4.1 簡介 - 55 -
4.2 窄頻混波器設計 - 56 -
4.2.1 單平衡混波器 - 56 -
4.2.2 雙平衡混波器 - 57 -
4.3 超寬頻混波器設計 - 61 -
4.3.1 轉換增益分析 - 62 -
4.3.2 線性度與雜訊分析 - 65 -
4.4 設計流程與模擬結果 - 67 -
4.5 晶片量測結果與討論 - 70 -
第五章 壓控振盪器設計 - 77 -
5.1 簡介 - 77 -
5.2 窄頻壓控振盪器設計 - 77 -
5.2.1 相位雜訊 - 80 -
5.2.2 電路分析與設計 - 81 -
5.3 超寬頻壓控振盪器設計 - 83 -
5.3.1 電路設計架構與相位雜訊分析 - 86 -
5.4 設計流程與模擬結果 - 90 -
5.5 晶片量測結果與討論 - 95 -
第六章 結論 - 101 -
Reference - 102 -
參考文獻 -102-
作者簡介 -109-
[1] Ryynanen, J., Kivekas, K., Jussila, J., Parssinen, A., and Halonen, K.A.I, “A direct conversion CMOS transceiver for IEEE 802.11a WLANs,” ISSCC Dig. Tech. Papers, pp.354-498, vol.1, 2003
[2] Maeda, T.; Yano, H.; Yamase, T.; Yoshida, N.; Matsuno, N.; Hori, S.; Numata, K.; Walkington, R.; Tokairin, T.; Takahashi, Y.; Fujii, and M.; Hida, H., “A direct-conversion CMOS transceiver for 4.9-5.95 GHz multi-standard WLANs,” ISSCC Dig. Tech. Papers, pp.90-515, vol.1, 2004
[3] Perraud, L., Recouly, M., Pinatel, C., Sornin, N., Bonnot, J.-L., Benoist, F., Massei,.M., and Gibrat, O., “A direct-conversion CMOS transceiver for the 802.11a/b/g WLAN standard utilizing a Cartesian feedback transmitter,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, DEC 2004
[4] Ahola, R.; Aktas, A.; Wilson, J.; Rao, K.R.; Jonsson, F.; Hyyrylainen, I.; Brolin, A.; Hakala, T.; Friman, A.; Makiniemi, T.; Hanze, J.; Sanden, M.; Wallner, D.; Yuxin Guo; Lagerstam, T.; Noguer, L.; Knuuttila, T.; Olofsson, P.; Ismail, M.; ”A single-chip CMOS transceiver for 802.11a/b/g wireless LANs,” IEEE Journal of Solid-State Circuits, vol.39, no.12, Dec 2004
[5] Zargari, M.; Terrovitis, M.; Jen, S.H.-M.; Kaczynski, B.J.; MeeLan Lee; Mack, M.P.; Mehta, S.S.; Mendis, S.; Onodera, K.; Samavati, H.; Si, W.W.; Singh, K.; Tabatabaei, A.; Weber, D.; Su, D.K.; and Wooley, B.A., “A single-chip dual-band tri-mode CMOS transceiver for IEEE 802.11a/b/g wireless LAN,” IEEE Journal of Solid-State Circuits, vol.39, no.12, DEC 2004
[6] Behzad. Razavi, “RF Microeletronics”, Prentice Hall, 1998
[7] 袁杰, “無線電通訊技術, ”全華科技圖書股份有限公司, 1999.
[8] B. Razavi, “Design Considerations for Direct-Conversion Receivers,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, pp.428 –435, June 1997.
[9] Thomas H.Lee,”The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge, 1998
[10] Y.-T. Wang and A. A. Abidi, “CMOS active filter design at very high frequencies,” IEEE Journal of Solid-State Circuits, pp.1562-1574, Dec 1990
[11] Behzad. Razavi,”Design considerations for direct-conversion receivers,” IEEE Trans on Circuits and Systems II, vol.44, no.6, JUNE 1997
[12] Joy Laskar, Babak Matinpour, and Supito Chakraborty, “Modern Receiver Front-Ends,” JOHN WILEY, 2004
[13] Jan Crols and Michiel S. J. Steyaert, “Low-IF Topologies forHigh-Performance Analog Front Ends of Fully Integrated Receivers,” IEEE Trans on Circuits and Systems II, vol.45, no.3, March 1998
[14] D.K. Shaeffer and Thomas H. Lee, “A 1.5V, 1.5GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745-759, May 1997.
[15] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS Mixers and Polyphase Filters for Large Image Rejection,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 873-887, June 2001.
[16] Koullias, I.A.; Havens, J.H.; Post, I.G.; Bronner, P.E.;”A 900 MHz transceiver chip set for dual-mode cellular radio mobile terminals,” ISSCC Dig. Tech. Papers, pp1140-141 , 1993
[17] R. A. Brown, R. J Dewey, and C.J. Collier, “An investigation of the limitations in direct conversion radio on FM-reception,” in Proc. Int Conf. Land Mobile Radio, pp. 157-164 Dec. 1985
[18] Mohan, S.S.;Hershenson, M.D.M.;Boyd, S.P.; Lee T.H.,” Bandwidth extension in CMOS with optimized on-chip inductors,” Solid-State Circuits, IEEE Journal of, vol 35, p346-355, 2000
[19] Ming-Feng Huang, Shuenn-Yuh Lee and Chung J. Kuo, "A CMOS Even Harmonic Mixer with Current Reuse," IEEE int. symp. on Low Power Electronics and Design (ISLPED), August 2004, pp. 290 -295.
[20] D.H.Shen et al., “A 900-MHz RF Front End with Integrated Discrete-Time Filters,” IEEE J. Solid-State Circuits, vol. 31, pp. 1945-1954, Dec 1996.
[21] J. C. Rudell et al, “A 1.9-GHz Wide-Band IF Double Conversion CMOS, ” Receiver for Cordless Telephone applications,” IEEE Journal of Solid-State Circuits, vol. 32, no. 12, pp. 2071-2088, Dec. 1997.
[22] J. Zyren, and A. Petrick, “Application Note: Tutorial on Basic Link
Budget Analysis,” Intersil Co. 1998.
[23] A. Doufexi, S. Armour, A. Nix, and D. Bull, “A Comparison of HIPERLAN/2 and IEEE 802.11a Physical and MAC Layers,” Communications and Vehicular Technology, 2000. SCVT-2000. Symposium on, 2000, pp. 14-20.
[24] 唐志淳, ” 5-GHz互補式金氧半射頻接收機前端電路設計,” 國立台灣大學博士論文, 民國90年
[25] Kai Chang, Inder Bahl, and Vijay. Nair, “RF and Microwave Circuit and Component Design for Wireless Design”, JOHN WILEY, 2002, pp. 87~103
[26] John Janssens and Michiel Steyaert, “CMOS Cellular Receiver Front-ENDS,” KULUWER ACADEMIC, pp.45, 200
[27] Shuenn-Yuh Lee, Ming-Feng Huang, and Chung J. Kuo, “Performance Analysis
and Implementation of A CMOS Even Harmonic Mixer with Current Reuse for
low power applications,” IEEE Trans. on Circuits and Systems-I : Regular Paper,
in press.
[28] BoSco Leung, “VLSI for Wireless Communication,” Prentice Hall Electronics and VLSI Series Charles G.Sodini, Series Editor ,2002
[29] Matthias, Vorwerk, and Dietmar Eggert, “A 1.8 GHz Low-Noise Amplifier in CMOS/SIMOX technology,” Electronics, Circuits and Systems, 1998 IEEE International Conference on ,Volume: 2 ,7-10 Sept. 1998
[30] Tsuneo Tokumitsu, Ichihiko Toyoda and Masayoshi Aikawa, “A Low-Voltage, High-Power T/R-Switch MMLC Using LC Resonators,” IEEE Trans. Microwave Theory Tech, VOL. 43, NO.5,MAY 1995
[31] Tae Wook Kim, Bonkee Kim, and Kwyro Lee, ”Highly Linear Receiver Front-End Adopting MOSFET Transconductance Linearization by Multiple Gated Transistors, ”IEEE J.Solid State Circuits, vol 39,NO.1, Jan, 2004
[32] V. Aparin and C. persico, “Effect of out-of band termination on intermodulation distortion in common emitter circuits,” IEEE MTT-S Dig.,1990,pp.977-980.
[33] Jung-Suk Goo, Hee-Tae Ahn, Donald J.Ladwig,Zhiping Yu,Senior, a Thomas H.Lee, and Robert W.Dutton, “A Noise Optimization Technique for Integrated Low-Noise Amplifiers, ”IEEE J.Solid State Circuits, VOL. 37,NO. 8, AUGUST 2002
[34] Keng Leong Fong,” High-Frequency Analysis of Linearity Improvement Technique of Common-Emitter Transconductance Stage Using a Low-Frequency-Trap Network,” IEEE Journal of Solid-State Circuits, VOL. 35, NO.8, Jan 2000
[35] David M. Pozar, “Microwave Engineering ,“ John Wiley &Sons Prentice Hall Printed in the United states of America, pp. 672, 2002
[36] 李志常, “高線性度RF CMOS 低雜訊放大器之最佳閘極寬度設計與RF CMOS 之新型相位雜訊模型,” 國立中正大學電機所碩士論文,民國九十三年七月
[37] Mohammad Madihian, Laurent Desclos Kenichi Maruhashi,Kazuhiko Onda, and Masaaki Kuzuhara, “A Sub-Nanosecond Resonant-Tyoe Monolithic T/R Switch for Millimeter-Wave Systems Applications,” IEEE Trans. Microwave Theory Tech,Vol. 46,No7,JULY 1998
[38] Mohammad Madihian, Laurent Desclos Kenichi Maruhashi,Kazuhiko Onda, and Masaaki Kuzuhara, “A Sub-Nanosecond Resonant-Tyoe Monolithic T/R Switch for Millimeter-Wave Systems Applications,” IEEE Trans. Microwave Theory Tech,Vol. 46,No7,JULY 1998
[39] J. Bhattacharjee, D. Mukherjee, and J. Laskar, “A monolithic CMOS VCO for wireless LAN applications,” in Proceedings of IEEE International Symposium on Circuits and Systems, pp.441-444, 2002.
[40] Kazuya Yamamoto, Tetsuya Heima, Akihiko Furukawa, Masayoshi Ono, Yasushi Hashizume, Hiroshi Komurasaki, Shigenobu Maeda, Hisayasu Sato, and Naoyuki Kato, “A 2.4-GHz-Band 1.8-V Operation Single-Chip Si-CMOS T/R-MMIC Front-End with a low Insertino Loss Switch,” IEEE JOURNAL OF SOLID-STATE Circuits,VOL. 36,NO.8,AUGUST 2001
[41] Feng-Jung Huang, and Kenneth O, ”A 0.5-um CMOS T/R Switch for 900-MHz Wireless Applications,” IEEE JOURNAL OF SOLID-STATE Circuits, VOL. 36,NO 3,MARCH 2001
[42] Kazumasa Kohama, Takahiro Ohgihara, and Yoshikazu Murakami,”High Power DPDT Antenna Switch MMIC for Digital Cellular Systems,” IEEE JOURNAL OF SOLID-STATE Circuits, VOL. 31, NO. 10, OCT 1996
[43] KAI CHANG, INDER BAHL,”RF and Microwave Circuit and Component Design for Wireless System”, John Wiley &Sons Prentice Hall, 2002
[44] Ming-Feng Huang, Shuenn-Yuh Lee and Chung J. Kuo, "A CMOS Even Harmonic Mixer with Current Reuse," IEEE int. symp. on Low Power Electronics and Design (ISLPED), August 2004, pp. 290 -295.
[45] Ching Wen Tang, Jyh Wen Sheen, and Chi Yang Chang, “Chip-Type LTCC-MLC Baluns Using the Stepped Impedance Method,” IEEE Trans. Microwave Theory Tech, vol . 49 ,No. 12, Dec. 2001
[46] A. H. Baree,and I. D. Robertson, “Monolithic MESFET distributed baluns based on the distributed amplifier gate-line termination technique,” IEEE Trans.Microwave Theory Tech,vol. 45,no. 2,pp. 188-195,February 1997
[47] Hideki Kamitsuna,and Hiroyo Ogawa,"Ultra-wideband MMIC Active Power Splitters with Arbitrary phase Relationships, " IEEE Trans. Microwave Theory Tech, vol . 41,No. 9, Sept. 1993
[48] Fard, A.; Johnson, T.; Aberg, D.; “A low power wide band CMOS VCO for multi-standard radios”, IEEE Radio and Wireless Conference 2004
[49] J.Lin,C.Zelley,O.B.Lubeeke,P.Gould,and R.Yan”,A Silicon MMIC Active Balun/buffer amplifier with High Linearity and Low Residual Phase noise,”IEEE MTT-S International Microwave Symposium Dig.vol. 3,pp.1289-1292,2000
[50] Huainan Ma, Sher Jiun Fang, Fujiang Lin,and Hiroshi Nakamura,"Novel Active Differential Phase Splitters in RFIC for Wireless Applications, " IEEE Trans. Microwave Theory Tech, vol. 46, No. 12, Dec.1998
[51] 高公銘,“使用正交錯誤校正器之5.2GHz互補式金氧半射頻前端接收器,”國立中正大學電機所碩士論文,民國九十四年七月
[52] 張盛富, 戴明鳳, ”無線通信之射頻被動電路設計,” 全華科技圖書, 1998
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top