跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) GMT+8:2024/09/18 10:57
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

Author my cdr record
 
twitterline
Author:靳龍庭
Author (Eng.):Long-ting Jin
Title:利用跨階層於無線感測網路之效能分析
Title (Eng.):Performance Analysis of Cross Layer Design in Wireless Sensor Networks
Advisor:溫志宏溫志宏 author reflink
advisor (eng):Jyh-horng Wen
degree:Master
Institution:國立中正大學
Department:電機工程所
Narrow Field:工程學門
Detailed Field:電資工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2006
Graduated Academic Year:94
language:English
number of pages:59
keyword (chi):跨階層無線感測網路
keyword (eng):Cross layerwireless sensor networks
Ncl record status:
  • Cited Cited :0
  • HitsHits:239
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:1
無線感測網路其重要的設計考量為減少能量消耗來延長系統使用時間。現今大部份有關無線感測網路的研究工作都只集中在單一階層方面,並未考量到不同階層間相互的影響,在本論文中,我們主要研究為無線感測網路實體層與資料鏈結層對上鏈傳輸的影響。在實體層中,我們提出一個適應性調變技術暨傳輸能量控制機制用以減少傳輸能量使無線感測網路能有效節省電力消耗。經由模擬結果可得知我們所提出的機制能在系統所規定的位元錯誤率下節省較多的傳輸能量。在資料鏈結層我們考慮一個有限長度的佇列並採取Q. Liu 等人所提出的佇列系統來分析實體層與資料鏈結層的關係,並建構出有限狀態馬可夫鍊,算出資料鏈結層中的封包丟棄率。最後,我們利用封包遺失率和平均資料輸出量來分析系統效能,從模擬結果得知,實際上不同的調變模式和傳輸能量控制機制會影響佇列中被丟棄掉的封包數目。我們所提出的適應性調變技術暨傳輸能量控制機制在同時考慮到佇列的情況下,對於整體系統雖然不能獲得較高的平均資料輸出量,但在系統所規定的位元錯誤率下仍然可以減少傳輸能量的消耗。
For wireless sensor networks, the important design consideration is to extend the lifetime by reducing the power consumption. Most of recent research works only focus on the individual layer issues and do not care the interaction between different layers in wireless sensor networks. In this thesis, we use a cross layer approach to study the impact of physical layer and data link layer for uplink transmission in wireless sensor networks. At the physical layer, we propose an adaptive modulation with power control scheme to achieve energy efficiency. Simulation results show that our proposed scheme is able to save much transmission power and maintain a target bit error rate.
In addition, we consider a finite length queue at the data link layer and adopt the queuing system proposed by Q. Liu et al to analyze the relationship between two layers. Then, we construct a finite state Markov chain (FSMC) channel to obtain packet dropping probability at the data link layer. Finally, we can get the packet loss rate and average throughput to analyze the performance of system. Simulation results show that the different modulation modes and power control schemes can actually influence the number of dropped packets in the queue. Even if our proposed scheme with queuing can not increase the average throughput, but it can still reduce the power consumption for overall system.
Abstract in Chinese
Abstract in English
Contents
List of Figures
List of Tables
Chapter 1 Introduction
1.1 Background overview and motivation
1.2 Organization
Chapter 2 Overview of wireless sensor networks
2.1 Introduction to wireless sensor networks
2.2 Sensor networks communication and hardware architecture
2.3 Examples of application in sensor networks
2.4 Sensor networks challenges
2.5 Requirements
2.6 Protocol stack of the sensor networks
2.7 Cross layer design for sensor networks
Chapter 3 Physical layer analysis of adaptive modulation with power control in
wireless sensor networks
3.1 System description
3.2 Adaptive modulation without power control scheme (AM without PC)
3.3 Adaptive modulation with power control scheme 1 (AM with PC 1)
3.4 Adaptive modulation with power control scheme 2 (AM with PC 2)
3.5 Simulation results
Chapter 4 Queuing analysis and adaptive modulation with power control in
wireless sensor networks
4.1 System model with queue
4.2 FSMC channel model
4.3 The queuing model with adaptive modulation scheme
4.3.1 Arrival process
4.3.2 Queue service process
4.3.3 Queue state
4.3.4 Stationary distribution
4.4 Performance analysis
4.5 Simulation results
Chapter 5 Conclusions
References
[1] I.F. Akyildiz, W. Su, Y. Sankarasubramauiam, and E. Cayirci, “A survey on
sensor network,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102-
116, August 2002.
[2] Chee-Yee Chong and Srikanta P. Kumar, “Sensor networks: evolution,
opportunities, and challenges,” Proceedings of the IEEE, vol. 91, no. 8,
pp. 1247-1256, August 2003.
[3] D. Culler, D. Estrin, and M. Srivastava, “Guest edition’ introduction:
overview of sensor networks,” IEEE Computer Magazine, vol. 37, no. 8, pp.
41-49, August 2004.
[4] M. Tubasishat and S. Madria, “Sensor networks: an overview,” IEEE
Potentials Magazine, vol. 22, no. 2, pp. 20-23, April-May 2003.
[5] L. Caponi, F. Chiti, and R. Fantacci, “A dynamic rate allocation
technique for wireless communication systems,” Proceedings of IEEE
International Conference on Communications, pp. 4263-4267, June 2004.
[6] B. J. Choi and L. Hanzo, Adaptive Wireless Tranceivers, John Wiley & Sons,
2002.
[7] A. J. Goldsmith, Wireless Communications, Cambridge University Press, 2005.
[8] M. S. Alouini and A. J. Goldsmith, “Adaptive modulation over Nakagami
fading channels,” Kluwer Journal on Wireless Communications, vol. 13, no.
1-2, pp. 119-143, May 2000.
[9] A. J. Goldsmith and S. Chua, “Variable-rate variable-power MQAM for fading
channel,” IEEE Transactions on Communications, vol. 45, no. 10, pp. 1218-
1230, October 1997.
[10] S. T. Chung and A. J. Goldsmith, “Degrees of freedom in adaptive
modulation: a unified view,” IEEE Transactions on Wireless
Communications, vol. 49, no. 9, pp. 1561-1571, September 2001.
[11] C. H. Lim and J. M. Cioffi, “Performance of the adaptive rate MQAM with
on/off control,” IEEE Communications Letters, vol. 5, no. 1, pp. 16-18,
January 2001.
[12] Jia. Tang and Xi Zhang, “Cross-layer design of dynamic resource
allocation with diverse QoS guarantees for MIMO-OFDM wireless networks,”
Proceedings of Sixth IEEE International Symposium on World of Wireless
Mobile and Multimedia Networks (WoWMoM’05), pp. 205-212, June 2005.
[13] A. Gjendemsjo, G. E. Oien, and H. Holm, “Optimal power control for
discrete-rate link adaptation schemes with capacity-approaching coding,”
Proceedings of IEEE Global Telecommunications Conference, pp. 3498-3502,
November 2005.
[14] C. Kose and D. Goeckel, “On power adaptation in adaptive signaling
systems,”IEEE Transactions on Wireless Communications, vol. 48, no. 11,
pp. 1769-1773, November 2000.
[15] W. R. Heinzlman, A. Chandrakasan, and H. Balakrishnan, “An application-
specific protocol architecture for wireless microsensor networks,”IEEE
Transactions on Wireless Communications, vol. 1, no. 4, pp. 660-670,
October 2002.
[16] A. J. Goldsmith and S. B. Wicker, “Design challenges for energy-
constrained ad hoc wireless networks,” IEEE Wireless Communications
Magazine, vol. 9, no. 4, pp. 8-27, August 2002.
[17] Q. Liu, S. Zhou, and G. B. Giannakis, “Queuing with adaptive modulation
and coding over wireless links: cross-layer analysis and design,” IEEE
Transactions on Wireless Communications, vol. 4, no. 3, pp. 1142-1153,
May 2005.
[18] Q. Liu, S. Zhou, and G. B. Giannakis, “Cross-layer scheduling with
prescribed QoS guarantees in adaptive wireless networks,” IEEE Journal
on Selected Areas in Communications, vol. 23, no. 5, pp. 1056-1066, May
2005.
[19] Q, Liu, S, Zhou, and G. B. Giannakis, “TCP performance in wireless
access with adaptive modulation and coding,” Proceedings of IEEE
International Conference on Systems Communications, pp. 3989-3993, June
2004.
[20] Cheng-Fu Chou and Kwang-Ting Chuang, “CoLaNet: A cross-layer design of
energy-efficient wireless sensor networks,” Proceedings of IEEE
International Conference on Systems Communications, pp. 364-369, August
2005.
[21] W. Su and T. L. Lim, “Cross-layer design and optimization for wireless
sensor networks,” Proceedings of Seventh ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing (SNPD’06), pp. 278-284, June 2006.
[22] Ming-Hui Jin, Ren-Guey Lee, Cheng-Yan Kao, You-Rui Wu, D. Frank Gsu,
Tse-Ping Dong, and Kuan-Tase Huang, “Sensor network design and
implementation for health telecare and diagnosis assistance
applications,”Proceedings of 11th IEEE International Conference on
Parallel and Distributed Systems, pp. 407-411, July 2005.
[23] P. Bauer, M. Sichitiu, R. Istepanian, and K. Premaratne, “The mobile
patient: distributed sensor networks for patient monitoring and care,”
Proceedings of IEEE EMBS International Conference on Information
Technology Applications in Biomedicine, pp. 17-21, November 2000.
[24] J. G. Proakis, Digital Communications, 4nd Ed., New York: McGraw-Hill,
2000.
[25] Hughes Hallett, Applied Calculus for Business, Social Sciences, and Life
Sciences, 1st Ed, New York: WILEY, 1996.
[26] A. T. Hoang and M. Motani, “Buffer and channel adaptive modulation for
transmission over fading channels,” Proceedings of IEEE International
Conference on Communications, pp. 2748-2752, May 2003.
[27] H. Kwon, T. H. Kim, S. Choi, and B. Gi Lee, “Cross-layer lifetime
maximization under reliability and stability constraints in wireless
sensor networks,”Proceedings of IEEE International Conference on
Communications, pp. 3285-3289, May 2005.
[28] Hong Shen Wang and Nader Moayeri, “Finite-state Markov channel-a usefual
model for radio communication channels,” IEEE Transactions on Vehicular
Technology, vol. 44, no. 1, pp. 163-171, February 1995.
[29] Q. Zhang, and S. A. Kassam, “Finite-state Markov model for rayleigh
fading channels,” IEEE Transactions on Wireless Communications, vol. 47,
no. 11, pp. 1688-1692, November 1999.
[30] Xi Zhang, Jia Tang, Hsiao-Hwa Chen, Song Ci, and Mohsen Guizani,
“Cross-layer-based modeling for quality of service guarantees in mobile
wireless networks,” IEEE Communications Magazine, vol. 44, no. 1, pp.
100-106, January 2006.
[31] Q, Liu, S, Zhou, and G. B. Giannakis, “Cross layer combining of adaptive
modulation and coding with truncated ARQ over wireless links,” IEEE
Transactions on Wireless Communications, vol. 3, no. 5, pp. 1746-1755,
September 2004.
[32] L. B. Le, E. Hossain, and A. S. Alfa, “Queuing analysis for radio link
level scheduling in a multi-rate TDMA wireless network,” Proceedings of
IEEE Global Telecommunications Conference, pp. 4061-4065, November 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
system icon system icon