跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 21:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭清堅
研究生(外文):Ching-Jian Jeng
論文名稱:運用自我耦合環型共振器之多傳輸零點帶通濾波器的分析與設計
論文名稱(外文):Analysis and Design of Self-Coupled Ring-Resonator Bandpass Filters with Multiple Transmission Zeros
指導教授:張盛富
指導教授(外文):Sheng-Fuh Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:84
中文關鍵詞:自我耦合帶通濾波器雙頻帶通濾波器
外文關鍵詞:bandpas filterself-coupled
相關次數:
  • 被引用被引用:3
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
本論文分析及設計自我耦合環型之多傳輸零點帶通濾波器。利用自我耦合支節的阻抗比值和耦合係數取代傳統微擾方式,達到奇偶波模分離與縮小共振器長度的效果。同時利用輸入埠與輸出埠之間夾角差的變化,產生通帶外可變動的傳輸零點。在雙頻帶通濾波器方面,藉由耦合係數及耦合長度比例來控制第二通帶的座落位置。依據不同電路效能的需求,我們以自我耦合環型共振器為基本元件設計三類型帶通濾波器:第一為小型化濾波器(類型A及類型B);第二為可調變傳輸零點,細分成通帶高低裙帶各一個傳輸零點(類型C),通帶高裙帶有兩個傳輸零點(類型D)和通帶低裙帶有兩個傳輸零點(類型E);第三為雙頻帶通濾波器(類型F及類型G)。這些電路的傳輸零點均由理論預估,再運用電磁模擬軟體考慮電路結構的寄生效應,以增加電路模擬的準確性。最後進行實作及量測驗證其理論。量測結果顯示,上述各類型電路的共振頻率、通帶頻寬與傳輸零點位置均吻合計算及模擬預測,證實以自我耦合環型共振器為基礎的帶通濾波器具備小型化、多傳輸零點以及雙通帶的多項特性,可依不同系統的需求而設計。
Self-coupled-resonator bandpass filters with multiple transmission zeros are investigated in this thesis. The impedance ratio and coupling coefficient of proposed self-coupled step-impedance resonator are employed to split the even and odd mode and to reduce the resonator length. Which also control the second passband location. Additionally, the separation of input and output tapping positions is found to be able to generate an additional stop-band transmission zeros. Three features of bandpass filters based on the self-coupled step-impedance resonators are designed: (1) miniaturized structure (type A and B); (2) controllable transmission zeros, divided into one transmission zero on each side of passband (type C), two transmission zeros on high-side of passband (type D), and on lower-side of passband (type E); (3) dual passbands (type F and G). The filters responses of all these types are predicted from even-odd mode theory and then fine-tuned by EM simulator. The measurement results confirm that the passband center frequency, bandwidth, and transmission zero locations agree very well with the theory and simulation. This show that the self coupled resonator bandpass filter can have various features for different system equipments.
第一章 緒論 1
1.1 研究動機 1
1.2 論文內容摘要 2
第二章 環型共振器之帶通濾波器 3
2.1 基本概念簡介 3
2.2 文獻探討 4
第三章 小型化環型共振器之帶通濾波器 7
3.1 基本概念簡介 7
3.2 自我耦合環型共振器帶通濾波器型A 8
3.2.1 共振條件分析 9
3.2.2 傳輸零點分析 15
3.2.3 模擬與實作結果 19
3.3 自我耦合環型共振器帶通濾波器型B 25
3.3.1 共振條件分析 26
3.3.2 傳輸零點分析 32
3.3.3 模擬與實作結果 35
3.4 總結比較 41
第四章 可調變傳輸零點之環型共振器帶通濾波器 42
4.1 自我耦合環型共振器帶通濾波器型C、D、E 42
4.1.1 共振條件分析 43
4.1.2 傳輸零點分析 49
4.1.3 模擬與實作結果 54
4.2 總結比較 63
第五章 雙頻帶環型共振器之帶通濾波器 65
5.1 基本概念簡介 65
5.2 自我耦合環型共振器帶通濾波器型F 65
5.2.1 偶數倍頻率共振條件分析 66
5.2.2 頻帶控制因素分析 67
5.2.3 頻寬選擇分析 69
5.2.4 傳輸零點分析 70
5.2.5 模擬與實作結果 72
5.3 自我耦合環型共振器帶通濾波器型G 75
5.3.1模擬結果 75
4.2 總結比較 77
第六章 結論 80
參考文獻 81









圖 目 錄
圖2.1 濾波器頻率響應比較圖 3
圖2.2 平面型雙模態濾波器 4
圖2.3 雙模態濾波器 (a)介電型 (b)波導型 6
圖3.1 環形共振器濾波器 (a)帶止濾波器 (b)帶通濾波器 7
圖3.2 自我耦合環型共振器濾波器型A示意圖 8
圖3.3 自我耦合濾波器型A共振器示意圖 9
圖3.4 濾波器型A共振模態示意圖 (a)偶波模 (b)奇波模 9
圖3.5 阻抗比值相對於正歸化共振頻率之響應 ..12
圖3.6 R比值在耦合係數 變化下其頻率關係圖(當 =0) (a)R<1 (b)R>1 13
圖3.7 R比值在耦合係數 變化下其頻率關係圖(當 =0) (a)R<1 (b)R>1 ..14
圖3.8 濾波器型A共振器兩路傳輸路徑等效電路 ..15
圖3.9 平行耦合傳輸線示意圖 (a)四埠 (b)二埠 ..15
圖3.11 輸出入埠間夾角在各頻率其Y21關係圖 . 19
圖3.12 濾波器型A電路佈局圖 ..21
圖3.13 濾波器型A實體照像圖 ..21
圖3.14 濾波器型A植入損失模擬與實作比較 ..22
圖3.15 濾波器型A返回損失模擬與實作比較 ..22
圖3.16 濾波器型A彎折型電路佈局圖 ..23
圖3.17 濾波器型A彎折型實體照像圖 ..23
圖3.18 濾波器型A彎折型植入損失模擬與實作比較 ..24
圖3.19 濾波器型A彎折型返回損失模擬與實作比較 ..24
圖3.20 自我耦合雙模態濾波器型B示意圖 ..25
圖3.21 自我耦合濾波器型B共振器示意圖 ..26
圖3.22 濾波器型B共振模態示意圖 (a)偶波模 (b)奇波模 ..26
圖3.23 阻抗比值相對於正歸化共振頻率之響應 ..29圖3.24 R比值在耦合係數 變化下其頻率關係圖 (a)R<1 (b)R>1 ..30圖3.25 R比值在耦合係數 變化下其頻率關係圖 (a)R<1 (b)R>1 ..31
圖3.26 濾波器型B共振器兩路傳輸路徑等效電路 ..32
圖3.27 R比值在正歸化各頻率其Y21關係圖 ..34
圖3.28 輸出入埠間夾角在各頻率其Y21關係圖 ..35
圖3.29 濾波器型B電路佈局圖 ..37
圖3.30 濾波器型B實體照像圖 ..37
圖3.31 濾波器型B植入損失模擬與實作比較 ..38
圖3.32 濾波器型B返回損失模擬與實作比較 ..38
圖3.33 濾波器型B彎折型電路佈局圖 39
圖3.34 濾波器型B彎折型實體照像圖 ..39
圖3.35 濾波器型B彎折型植入損失模擬與實作比較 ..40
圖3.36 濾波器型B彎折型返回損失模擬與實作比較 ..40
圖4.1 自我耦合型環型共振器濾波器示意圖 (a)對邊饋入 (b)同邊饋入在兩旁
耦合支節 (c)同邊饋入在中間耦合支節…………………………...…….43
圖4.2 濾波器型C、D、E共振器示意圖 . 43
圖4.3 濾波器C、D、E共振模態示意圖 (a)偶波模(b)奇波模 . 44
圖4.4 阻抗比值在正歸化共振頻率下之響應 ..45
圖4.5 R比值在耦合係數 變化下其共振頻率關係圖 (a)R<1 (b)R>1 ..47
圖4.6 R比值在耦合係數 變化下其共振頻率關係圖 (a)R<1 (b)R>1 ..48
圖4.7 濾波器型C、D、E共振器兩路傳輸路徑等效電路 (a)對邊饋入 (b)同邊饋入在兩旁耦合支節 (c)同邊饋入在中間耦合支節……………...……. 49
圖4.8 R比值在各頻率其Y21關係圖 (a)濾波器型C (b)濾波器型D
(c)濾波器型E……...……………………………………………………. ...51
圖4.9 輸出入埠間夾角在各頻率其Y21關係圖 (a)濾波器型C (b)濾波器型D
(c)濾波器型E……...……………………………………………………. ..53
圖4.10 濾波器C、D、E電路佈局圖 ..55圖4.11 電路實體照像圖 (a)濾波器C (b)濾波器D (c)濾波器E ..56圖4.12 濾波器電路彎折下之佈局圖 (a)濾波器型D (b)濾波器型E ..57圖4.13 電路彎折實體照像圖 (a)濾波器D (b)濾波器E ..57圖4.14 濾波器型C植入損失模擬與量測比較 ..58圖4.15 濾波器型C返回損失模擬與量測比較 ..58圖4.16 濾波器型D植入損失模擬與量測比較 ..59圖4.17 濾波器型D返回損失模擬與量測比較 ..59圖4.18 濾波器型D電路彎折植入損失模擬與量測比較 ..60圖4.19 濾波器型D電路彎折返回損失模擬與量測比較 ..60圖4.20 濾波器型E植入損失模擬與量測比較 ..61圖4.21 濾波器型E返回損失模擬與量測比較 ..61圖4.22 濾波器E電路彎折型植入損失模擬與量測比較 ..62圖4.23 濾波器E電路彎折型返回損失模擬與量測比較 ..62圖4.24 濾波器C、D及E型植入損失量測結果比較 ..63圖5.1 濾波器F在偶數倍頻率共振模態示意圖 (a)偶波模 (b)奇波模 ..66圖5.2 電氣長度 在耦合係數 變化下其共振頻率關係圖 ..68圖5.3 電氣長度 在R比值變化下其共振頻率關係圖 ..69圖5.4 阻抗比值在正歸化共振頻率下之響應 ..69圖5.5 濾波器型F共振器兩路傳輸路徑等效電路 ..70
圖5.6 R比值在各頻率其Y21關係圖 ..71
圖5.7 輸出入埠間夾角在各頻率其Y21關係圖 ..71
圖5.8 濾波器型F電路佈局圖 ..73
圖5.9 濾波器型F電路實體照像圖 ..73
圖5.10 濾波器型F植入損失模擬及量測比較 ..74
圖5.11 濾波器型F返回損失模擬及量測比較 ..74圖5.12 濾波器型G電路佈局圖 ..76圖5.13 濾波器型G植入損失及返回損失模擬結果 ..76











表 目 錄
表2.1 平面雙模態濾波器尺寸比較表 ..5
表3.1 濾波器型A及B計算、模擬及量測比較 41
表4.1 濾波器型C、D及E計算、模擬及量測數據比較表 ..64
表5.1 濾波器型F計算、模擬及量測數據比較表 ..78
表5.2 濾波器型G計算、模擬及量測數據比較表 ..79
[1]黃昱人, “低溫共燒陶瓷雙模態環型帶通波器與平衡器之設計,” 中正大學碩士論文, 2005.
[2]A. Matsuzawa, “RF-SoC-Expectations and required conditions,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 245-253, Jan. 2002.
[3]Jan van den Crommenacker, “The System-in-package approach,” IEE Communication Engineer, June-July 2003, pp. 24-25
[4]方士庭, “應用於高頻無線通訊之多層低溫共燒陶瓷(LTCC)的設計技術,” 中華民國陶業研究學會會刊第二十一卷, 第四期.
[5]林鴻欽, “多層低溫共燒陶瓷製程技術,” 中華民國陶業研究學會會刊第二十一卷, 第四期.
[6]向性一, “多層陶瓷之堆疊及疊壓技術,” 中華民國陶業研究學會會刊第二十二卷, 第一期.
[7]D. M. Pozar, Microwave Engineering. John Wiley and Sons, 1998, vol.2nd, ch.8.
[8]R. J. Cameron, “General coupling matrix synthesis for chebyshev filtering functions,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 433-442, April. 1999.
[9]J. S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonator for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2099-2109, December. 1996.
[10]I. Wolff and N. Knoppik, “Microstrip resonator and dispersion measurements on microstrip lines,” Electron Letter 7th, pp.779-781,1971.
[11]I. Wolff, “Microstrip bandpass filter using degenerate modes of a microstrip ring resonator, ” Electron Letter, vol. 8, no. 12, pp. 302-303, June 1972.
[12]J. S. Hong and M. J. Lancaster, Microstrip Filters For RF/Microwave Applications, John Wiley & Sons, 2001.
[13]M. Saguwa, M. Makimoto, and S. Yamashita, “Geometrical Structures and Fundamental Characteristics of Microwave Stepped-Impedance Resonators, ” IEEE Trans. Microwave Theory Tech., vol. 45, no. 7, pp. 1078-1085, July. 1997.
[14]M. Matsuo, H. Yabuki, and M. Makimoto, “Dual-mode stepped-impedance ring resonator for bandpass filter application,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1235-1240, July 2001.
[15]J. S. Hong and M. J. Lancaster, ”Microstrip bandpass filter using degenerate modes of a novel mender loop resonator,” IEEE Microwave and Guided Wave Letters, vol. 5, no. 11, pp. 371-372, Nov. 1995.
[16]A. Görür, “A Novel Dual-Mode Bandpass Filter With Wide stopband Using the properties of Microstrip Open-Loop Resonator,” IEEE Microwave and Wireless Comp . Lett., vol.12, no. 10, pp. 386-388, Nov. 2002.
[17]A. Görür, C. Karpuz, and M. Akpinar, “A Reduced-Size Dual-Mode Bandpass Filter With Capacitivity Loaded Open-Loop Arms,” IEEE Microwave and Wireless Comp . Lett., vol.13, no. 9, pp. 385-387, Sept. 2003.
[18]L. Zhu, and K. Wu, “A Joint Field/Circuit Model of Line-to-Ring Coupling Structures and Its Application to the Design of Microstrip Dual-Mode Filters and Ring Resonator Circuits,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 10, pp. 1938-1948, Oct. 1999.
[19]K. F. Raihn, and G. L. Het-Shipton, “Folded Dual-Mode HTS Microstrip Band Pass Filter,” IEEE MTT-S, Digest, pp. 1959-1962, 2002.
[20]A. Görür, “Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter application, ” IEEE Trans. Microwave Theory Tech., vol. 52, no. 2, pp. 671-677, Feb. 2004.
[21]S. Amari, Comments on “Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter application, ” IEEE Trans. Microwave Theory Tech., vol. 52, no. 9 pp. 2190-2192, Sept. 2004.
[22]X. D. Huang, and C. H. Cheng, “A Novel Coplanar-Waveguide Bandpass Filter Using A Dual-Mode Square-Ring Resonator,” IEEE Microwave and Wireless Comp . Lett., vol.16, no. 1, pp. 13-15, Jan. 2006.
[23]A. Görür, “Realization of a Dual-Mode Bandpass Filter Exhibiting Either a Chebyshev or an Elliptic Characteristics by Changing Perturbation’s Size,” IEEE Microwave Wireless Comp . Lett., vol.14, no.3, pp. 118-120, March. 2004.
[24]B. T. Tan, J. J. Yu, and S. T. Chew, “A miniaturized dual-mode ring bandpass filter with a new perturbation,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 1, pp. 343-348, Jan. 2005.
[25]L. H. Hsieh and K. Chang, “Compact, Low Insertion-Loss, Sharp-Rejection, and Wide-Band Microstrip Bandpass Filters, ” IEEE Trans. Microwave Theory Tech., vol. 51, no. 4, pp. 1241-1246, Apr. 2003.
[26]G. Macchiarella, M. Fumagalli, and S. C. d’Oro, ”A New Coupling Structure for Dual Mode Dielectric Resonator,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 12, pp. 523-525, Dec. 2000.
[27]H. C. Chang and K. A. zaki, ”Evanescent-Mode Coupling of Dual-Mode Rectangular Waveguide Filters,” IEEE Trans. Microwave Theory and Tech., vol. 39, pp. 1307-1312, Aug. 1991.
[28]H. Yabuki, M. Sagawa, M. Matsuo and M. Makimoto, “Stripline Dual-Mode Ring Resonators and Their Application to Microwave Devices,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 5, pp. 723-729, May 1996.
[29]L. H. Hsieh and K. Chang, “Dual-Mode Quasi-Elliptic-Function Bandpass Filters Using Ring Resonators With Enhanced-Coupling Tuning Stubs,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 5, pp. 1340-1345, May 2002.
[30]A. C. Kundu, and I. Awai, “Control of Attenuation Pole Frequency of a Dual-Mode Microstrip Ring Resonator Bandpass Filter,” IEEE Trans. Microwave Theory and Tech., vol. 49, no. 6, pp. 1113-1117, June. 2001.
[31]D. Llorens, P. Otero, and C. C. Penalosa, “Dual-band, single CPW port, planar-slot antenna,” IEEE Trans. Antennas Propagat., vol. 51, no. 1, pp. 137-139, Jan 2003.
[32]Y. L. Kuo and K. L. Wong, “Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations,” IEEE Trans. Antennas Propagat., vol. 51, no. 9, pp. 2187-2192, Sep. 2003.
[33]S. Wu and B. Razavi, “A 900-MHz/1.8-GHz CMOS receiver for dual-band applications,” IEEE J. Solid-state Circuits, vol. 33, no. 12, pp-2178-2185, Dec. 1998.
[34]J. Ryynanen, K. Kivekas, J. Jussila, A. Parassinen, and K. A. I. Halonen, “A dual-band RF front-end for WCDMA and GSM applications, ” IEEE J. Solid-state Circuits, vol. 36, no. 8, pp. 1198-1204, Aug. 2001.
[35]H. M. Lee, C. R. Chen, C. C. Tsai, and C. M. Tsai, “Dual-band coupling and feed structure for microstrip filter design,” IEEE MTT-S, vol.3, June 2004, pp.1971-1974
[36]J. T. Kuo, T. H. Yeh and C. C. Yeh, “Design of Microstrip Bandpass Filters With a Dual-Passband Response,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 4, pp. 1331-1337, Apr. 2005.
[37]H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones, ” IEEE MTT-S. Microwave Symp. Dig., vol.3, June 1997, pp.789-792.
[38]L. C. Tsai and C. W. Hsue, “Dual-band bandpass filters using equal length coupled serial shunted lines and Z transform technique,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 4, pp. 1111-1117, Apr. 2004.
[39]Y. H. Jeng, S. F. Chang, Y. M. Chen, and Y. J. Hung, “A Novel Self-Coupled Dual-Mode Ring Resonator and Its Application to bandpass filters,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 5, pp. 2146-2152, May. 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top