跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 17:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:田健民
研究生(外文):Jian-Min Tian
論文名稱:直接調變式半導體雷射遭外部光注射之啾頻效應特性
論文名稱(外文):Frequency Chirping in Directly odulated Semiconductor Lasers Subject to External Optical Injection
指導教授:黃勝廣
指導教授(外文):Sheng-Kwang Hwang 
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:148
中文關鍵詞:啾頻半導體雷射直接調變光注入系統
外文關鍵詞:optical injectionsemiconductorCPRfrequency chirpingdirect modulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:2
本論文係以數值模擬的方式探討半導體雷射遭外部光注入後之啾頻效應特性;對於模擬計算,雷射系統的特性與動態是以單模方程式來表現;本論文探討雷射系統中不同的操作和本質參數對於啾頻效應的影響,以探究適用於實際光纖通訊應用的操作條件。
經由光鎖注入的方式,啾頻效應在穩定的光鎖注入條件下可以明顯的減少;在整個穩定的光鎖注入範圍中,啾頻效應減少的現象於不同光注入強度和兩顆雷射之間的光頻率差(detuning frequency: DF值)下都能觀察到,由此證明光鎖注入技術是減少啾頻效應非常有效的方法;在大範圍的調變必v下,啾頻效應亦能有效地減少;因為不同雷射系統擁有不同的鬆弛震盪頻率,啾頻效應減少隨著調變頻率變化的情形會有明顯的不同;本研究也證明啾頻效應減少在廣泛的操作和本質參數範圍中都能達到,指示光鎖注入技術的適用性;。
本研究中,啾頻效應減少有兩種主要的機制;經由研究證實增強系統的鬆弛震盪頻率是造成光鎖注入雷射在高調變頻率下啾頻效應減少的主要機制;另一方面,改善輸出光必v-注入電流 (L-I) 的輸出特性是造成光鎖注入雷射可有降低啾頻效應的另一個影響機制。
目錄
第一章. 前言 1
1.1 簡介 1
1.2 動機 4
1.3 論文流程 4
第二章. 雷射系統 6
2.1 光注入系統 6
2.2 理論模型 7
2.3 模擬模型 8
第三章. Frequency Chirping 效應 10
3.1 Frequency Chirping效應簡介 10
3.2 外部操作參數 11
3.2.1 調變頻率 11
3.2.2 調變係數 18
3.2.3 操作偏壓 25
3.2.4 光注入參數 31
3.2.5 外部參數之動態灰階圖 36
3.3 內部操作參數 37
3.3.1 Linewidth Enhancement Factor 37
3.3.2 Differential Carrier Decay Rate 42
3.3.3 Nonlinear Carrier Decay Rate 46
3.3.4 Spontaneous Carrier Decay Rate 49
3.3.5內部參數之動態灰階圖 52
第四章.總結 56
參考文獻 58
圖表 64
參考文獻
[1].M. Osinski, and J. Buus, “Linewidth broadening factor in semiconductor lasers--An overview,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 9-29, 1987.
[2].K. Vahala, L.C. Chiu, S. Margalit, and A. Yariv, “On the linewidth enhancement factor in semiconductor injection lasers,” Appl. Phys. Lett., vol. 42, no. 8, pp. 631 -633, 1983 .
[3].G. Sun, J.B. Khurgin, and R.A. Soref, “Design of quantum-dot lasers with an indirect bandgap short-period superlattice for eeducing the linewidth enhancement factor,” IEEE Photon. Technol. Lett., vol. 16, no. 10, pp. 2203-2205, 2004
[4].T. Ohtoshi, and N. Chinone, “Linewidth enhancement factor in quantum well lasers strained,” IEEE Photon. Technol. Lett., vol. 1, no. 6, pp. 117-119, 1989
[5].Y. Matsushima, K. Utaka, and K. Sakai, “Arrow spectral linewidth of MBE-grown GaInAs/AlInAs MQW lasers in the 1.55 μm range,” IEEE J. Quantum Electron., vol. 25, no. 6, pp. 1376-1380, 1989.
[6].F. Kano, Y. Yoshikuni, M. Fukuda, and J. Yoshida, “Linewidth enhancement factor of 1.3 μm InGaAsP/InP strained-layer multiple-quantum-well,” IEEE Photon. Technol. Lett., vol. 3, no. 10, pp. 877-879, 1991
[7].L. Xun, and H. Wei-Ping, “Analysis of frequency chirp in DFB lasers integrated with external modulators,” IEEE J. Quantum Electron., vol. 30, no. 12, pp. 2756-2766, 1994.
[8].F. Koyama, and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol., vol. 6, no. 1, pp. 87-93, 1988.
[9].G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightwave Technol., vol. 14, no. 10, pp. 2367-2373, 1996.
[10].S. Piazzolla, P. Spano, and M. Tamburrini, “Small signal analysis of frequency chirping in injection-locked semiconductor lasers,” IEEE J. Quantum Electron., vol. 22, no. 12, pp. 2219-2223, 1986.
[11].V. Kovanis, A. Gavrielides, T.B. Simpson, and J. M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Lett., vol. 67, no. 19, pp. 2780-2782, 1995.
[12].T.B. Simpson, J. M. Liu, and K.F. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers” Quantum Semiclass. Opt., vol. 9, pp. 765-784, 1997.
[13].S.K. Hwang, and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun., vol. 183, pp. 195-205, 2000.
[14].R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron., vol. 18, no. 6, pp. 976-983, 1982.
[15].F. Mogensen, H. Olsson, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron., vol. 21, no. 7, pp. 784-793, 1985.
[16].C. H. Henry, N.A. Olsson, and N.K. Dutta, “Locking range and stability of injection locked 1.54 µm InGaAsp semiconductor lasers,” IEEE J. Quantum Electron., vol. 21, no. 8, pp. 1152-1156, 1985.
[17].S. Piazzolla, P. Spano, and M. Tamburrini, “Small signal analysis of frequency chirping in injection-locked semiconductor lasers,” IEEE J. Quantum Electron., vol. 22, no. 12, pp. 2219-2223, 1986.
[18].H. F. Chen J. M. Liu, and T.B. Simpson, “Response characteristics of direct current modulation on a bandwidth-enhanced semiconductor laser under strong injection locking,” Opt. Commun., vol. 173, pp. 349-355, 2000.
[19].Y. Okajima, S.K. Hwang, and J. M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun., vol. 219, pp. 357-364, 2003.
[20].R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron., vol. 18, no. 6, pp. 976-983, 1982.
[21].F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron., vol. 21, no. 7, pp. 784-793, 1985.
[22].C.H. Henry, N.A. Olsson, and N.K. Dutta, “Locking range and stability of injection locked 1.54 µm InGaAsp semiconductor lasers,” IEEE J. Quantum Electron., vol. 21, no. 8, pp. 1152-1156, 1985.
[23].I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillation of an injection-locked semiconductor laser,” IEEE J. Quantum Electron., vol. 24, no. 2, pp. 148-154, 1988.
[24].R. Hui, A. D'Ottavi, A. Mecozzi, and P. Spano, “Injection locking in distributed feedback semiconductor lasers,” IEEE J. Quantum Electron., vol. 27, pp. 1688-1695, 1991.
[25].P. Gallion, H. Nakajima, G. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett., vol. 21, no.14, pp. 626-628, 1985.
[26].J. Wang, M.K. Haldar, L. Li, and F.V.C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett., vol. 8, no. 1, pp. 34-36, 1996.
[27].T.B. Simpson, and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 9, no. 10, pp. 1322-1324, 1997.
[28].J. M. Liu, H. F. Chen, X. J. Meng, and T.B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol. 9, no. 10, pp. 1325-1327, 1997.
[29].A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron., vol. 39, no.10, pp. 1196-1204, 2003.
[30].S.K. Hwang, and J. M. Liu, “35-GHz intrinsic bandwidth for direct modulation in 1.3-/spl mu/m semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 972-974, 2004.
[31].T.B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 7, no. 7, pp. 709-711, 1995.
[32].G. Yabre, and J.L. Bihan, “Reduction of nonlinear distortion in directly modulated semiconductor lasers by coherent light injection,” IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1132-1140, 1997.
[33].X.J. Meng, T. Chau, D.T.K. Ting, and M.C. Wu, “Suppression of second harmonic distortion in directly modulated distributed feedback lasers by external light injection,” Electron. Lett., vol. 34, no.21, pp. 2040-2041, 1998.
[34].X.J. Meng, T. Chau, and M.C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE Trans. Microwave Theory Techniques, vol. 47, no. 7(2), pp. 1172-1176, 1999.
[35].H.-K Sung, Y.-K Seo, and W.-Y Choi, “Dependence of semiconductor laser intermodulation distortions on fiber length and its reduction by optical injection locking,” IEEE International Topical Meeting on Microwave Photonics, pp. 186-189, 2000.
[36].C.H. Chang, L. Chrostowski, and C.J Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Select. Topics Quantum Electron., vol. 9, no. 5, pp. 1386-1393, 2003.
[37].X. Zhao, L. Chrostowski, and C.J Chang-Hasnain, “Dynamic range enhancement in 1.55 μm VESELs using injection-locking,” IEEE International Topical Meeting on Microwave Photonics, pp. 111-114, 2004.
[38].S. Kobayashi, J. Yamada, S. Machida, and T. Kimura, “Single-mode operation of 500 Mbit/s modulation AlGaAs semiconductor laser by injection locking, ” Electron. Lett., vol. 16, pp. 746-748, 1980.
[39].D.J.Malyon and A.P. McDonna, “102 km unrepeatered monomode fiber system experiment at 140 Mbits/s with an injection locked 1.52 µm laser transmitter, ” Electron. Lett., vol. 18, pp. 445-447, 1982.
[40].H. Nishimoto, H. Kuwahara, and M. Motegi, “Injection-locked 1.5 µm InGaAsP/InP lasers capable of 450 Mbit/s transmission over 106 km,” Electron. Lett., vol. 19, pp. 509-510, 1983. 92
[41].H. Toba, Y. Kobayashi, K. Yanagimoto, H. Nagai, and M. Nakahara, “Injection-locking technique applied to a 170 km transmission experiment at 445.8 Mbit/s,” Electron. Lett., vol. 20, pp. 370-371, 1984.
[42].T.B. Simpson, and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 9, no. 10, pp. 1322-1324, 1997.
[43].G. Morthier, F. Libbrecht, K. David, P. Vankwikelberge, and R.G. Baets, “Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 μm F-P and DFB lasers,” IEEE J. Quantum Electron., vol. 27, no. 7, 1990-2002, 1991.
[44].G. Morthier, “Design and optimization of strained-layer-multiquantum-well lasers for high-speed analog communications,” IEEE J. Quantum Electron., vol. 30, no. 7, 1520-1528, 1994.
[45].H. Watanabe, T. Aoyagi, A. Takemoto, T. Takiguchi, and E. Omura, “1.3-μm strained MQW-DFB lasers with extremely low intermodulation distortion for high-speed analog transmission,” IEEE J. Quantum Electron., vol. 32, no. 6, pp. 1015-1023, 1996.
[46].S.K. Hwang, J.M. Liu, and J.K. White “Characteristic of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Select. Topics Quantum Electron., vol. 10, no. 5, pp. 974-981, 2004
[47].T.B. Simpson, J.M. Liu, and A. Gavrielides, “Small signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron., vol. 32, pp. 1456-1468, 1996.
[48].T.B. Simpson and J.M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys., vol. 73, no. 5, pp. 2587-2589, 1993.
[49].J.M. Liu and T.B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron., vol. 30, no. 4, pp. 957-965, 1994.
[50].C. H. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol., vol. 4, no. 3, pp. 298-311, 1986.
[51].T. Okuda, H. Yamada, T. Torikai, and T. Uji, “Novel partially corrugated waveguide laser diode with low modulation distortion characteristics for subcarrier multiplexing,” Electron. Lett., vol. 30, no. 11, pp.862-863, 1994.
[52].K. Kishino, S. Aoki, and Y. Suematsu, “Wavelength variation of 1.6um wavelength buried heterostructure GaInAsP/In lasers due to direct modulation,” IEEE J. Quantum Electron., vol. 18, no. 3, pp. 343-351, 1982.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top